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application to seismic data

Christoph Georg Eichkitz1*, John Davies², Johannes Amtmann1, Marcellus Gregor Schreilechner1 

and Paul de Groot³ demonstrate how grey level co-occurrence matrix can be adapted to work 
on 3D imaging of seismic data.

T exture analysis is the extraction of textural features 
from images (Tuceryan and Jain, 1998). The mean-
ing of texture varies, depending on the area of sci-
ence in which it is used. In general, texture refers to 

the physical character of an object or the appearance of an 
image. In image analysis, texture is defined as a function of 
the spatial variation in intensities of pixels (Tuceryan and 
Jain, 1998). Seismic texture refers to the magnitude and 
variability of neighbouring amplitudes at sample locations 
and is physically related to the distribution of scattering 
objects (geological texture) within a small volume at the cor-
responding subsurface location (Gao, 2008). Four principal 
methods have been developed for the analysis of seismic 
texture (Figure 1). These are texture classification, segmenta-
tion, synthesis, and shape.

The aim of texture classification is to categorize features 
in an image by recognizing known texture classes. This 
approach is easy to compute and is the most used method of 
texture analysis. Texture segmentation partitions an image 

into different regions that have homogeneous properties. 
The segmentation can be either based on regions or based 
on boundaries between regions. In texture synthesis, small 
sample images are used as the basis for the construction or 
reconstruction of larger images. This methodology is widely 
applied in the reconstruction of digital images and in post-
production of films. Texture shape is the least used method 
of texture analysis. It uses texture information to construct 
3D surface geometries.

According to Tuceryan and Jain (1998), texture clas-
sification can be divided into four computational categories: 
statistical, geometrical, model-based, and signal processing 
methods of computation. Numerous applications are avail-
able that employ each of these methods.

Statistical texture analysis, such as the grey level co-
occurrence matrix (GLCM), grey level differences, or local 
binary pattern extraction, try to define the arrangement of 
different regions in an image through statistics. Statistical 
methods do not attempt to understand the hierarchical 

Figure 1 Texture analysis includes texture classification, texture segmentation, texture synthesis, and texture shape. Texture classification can be divided into 
four categories of computation: statistical methods, geometrical methods, model-based methods, and signal processing methods.
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or primitives (microtexture) and a hierarchy of spatial 
arrangements (macrotexture) of these primitives (Materka 
and Strzelecki, 1998). Geometrical texture analysis can be 
useful for symbolic description of images, but is more useful 
for synthesis than for analysis. Model-based texture analysis 
tries to describe texture by constructing image models. Model 
parameters are especially important, as they must capture 
the essential qualities of images. Signal processing methods 
usually apply a transformation to the data. This transforma-
tion is often based on a Fourier transform (Rosenfeld and 
Weszka, 1976), a Gabor transform (Daugman, 1985; Bovik 
et al., 1990), or a wavelet transform (Mallat, 1989; Laine 
and Fan, 1993; Lu et al., 1997).

Grey level co-occurrence matrix
The grey level co-occurrence matrix (GLCM) and its derived 
attributes are tools for image classification that were initially 
described by Haralick et al. (1973). The GLCM is a measure 
of how often different combinations of pixel brightness 
values occur in an image. Because typically two samples are 
compared, GLCM is referred to as a second order texture 
classification method. It is widely used for classification of 
satellite images (e.g. Franklin et al., 2001; Tsai et al., 2007), 
sea-ice images (e.g. Soh and Tsatsoulis, 1999; Maillard et 
al., 2005), magnetic resonance and computed tomography 
images (e.g. Kovalev et al., 2001; Zizzari et al., 2011), and in 
many other applications. Most of these GLCM applications 
involve classification of 2D images.

To apply GLCM to seismic data, the methods must be 
adapted to work on 3D data. Numerous investigators have 
devised solutions to this problem (e.g. Vinther et al., 1996; 
Gao, 1999, 2003, 2007, 2008a, 2008b, 2009, 2011; West et 
al., 2002; Chopra and Alexeev, 2005, 2006a, 2006b; Yenugu 
et al., 2010; de Matos et al., 2011). The methods by West et 
al. (2002) and Gao (2003, 2007, 2011) utilize flattened seis-
mic cubes and the GLCM calculation is done on 2D planes 

nature of a texture, but rather represent texture indirectly 
by non-deterministic properties that govern the distributions 
and relationships between samples of an image (Materka 
and Strzelecki, 1998). Geometrical texture analysis methods 
define texture as composed of well-defined textural elements 

Figure 2 Conversion of the seismic amplitude cube (a) in to grey level cube (b). 
The grey levels (c) are represented by discrete numbers (d).

Figure 3 In a 3D case the number of neighbors for one sample point can be best explained by examining a Rubik’s cube (a). The center of the Rubik’s cube (red 
box in (b)) has in total 26 neighboring boxes. The boxes are aligned in 13 directions. Analogous to this, a sample point in a seismic volume has 26 neighbours 
aligned in 13 directions (c).
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Figure 4 Calculation of grey level co-occurrence matrix-based attributes using eight grey levels for a randomly generated 2D grey-scale image (a). Grey tones of 
the image can be represented by discrete values (b). Number of co-occurrences of pixel pairs for a given search window are counted and grey level co-occurrence 
matrix (c) is produced. Based on this co-occurrence matrix, grey level co-occurrence matrices are determined for horizontal (d), vertical (e), 45° diagonal (f), 135° 
diagonal (g), and for all directions simultaneously (h). Initial step in calculation is determination of co-occurrences (column 2). Zero entries are marked in light 
grey and the highest value of each matrix is marked in dark grey. Calculations in single directions lead to sparse matrices. The GLCM is normalized by the sum of 
all elements to yield a probability matrix (column 3). Probabilities are used to calculate GLCM-based attributes. Column 4 shows Entropy, Contrast, Homogeneity, 
Entropy, and Cluster Tendency.
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(for 3D data). In both cases, the sample point of interest is 
at the centre of the subset and the analysis window or cube 
consists of odd numbers of sample points in all directions. 
The measurement of sample co-occurrences can be done in 
several directions. For 2D data, four space directions are 
possible and for 3D data, 13 space directions are possible 
with an offset of 1(Figure 3). It is possible to measure 
co-occurrences in a single direction and obtain textural 
information in that specific direction. The process can be 
repeatedly applied to determine textural measures for all 
other directions. Alternatively, co-occurrences can be cal-
culated simultaneously in multiple directions, producing a 
generalized measurement of texture for the whole structure. 
Analyses using this approach give smoother results, but sub-
tle information may be lost. The number of co-occurrences 
between all pairs of samples is entered in a symmetrical 2D 
matrix of the same size as the number of grey levels in the 
image. For further calculation of GLCM-based attributes, 
normalization of this matrix is necessary. All matrix entries 
are divided by the total number of co-occurrences, produc-
ing a matrix of proportions that can be regarded as a kind 

along the three coordinate axes. In a recent paper on GLCM 
applied to seismic data, de Matos et al. (2011) use a different 
approach. They calculate 2D GLCM along the structural dip 
and azimuth of the seismic cube, and in this manner they 
generate a pseudo 3D GLCM cube. Based on work by Tsai 
et al. (2007) and Lai et al. (2008) for 3D GLCM calculations 
on hyperspectral satellite data, a full 3D GLCM algorithm 
has been developed for seismic data (Eichkitz and Amtmann 
et al., 2012b, 2012c, 2013, 2014a, 2014b; Eichkitz and de 
Groot et al., 2014; Eichkitz et al., 2015).

Workflow for full 3D GLCM calculations
The first step in GLCM calculation is to transform the 
seismic input cube into a grey level cube in which each 
sample point is assigned a discrete number. A histogram of 
amplitude values in the seismic cube is generated and positive 
and negative thresholds are selected. The resulting amplitude 
range is divided into equal segments; the number of segments 
is equal to the desired number of grey levels (Figure 2). For 
seismic data this value typically is between 4 Bits (16 grey 
levels) and 8 Bits (256 grey levels).

The GLCM calculation is done using a running window. 
From each sample in the data, a subset is extracted and 
within this subset all sample combinations are measured and 
written into a 2D matrix. The extracted subset is defined by 
an analysis window (for 2D data) or by an analysis cube 

Figure 5 Structural dip is computed by complex trace analysis, discrete scan, or 
gradient structure tensor approach. Here, a discrete scan produced the best 
results. Images (a and c) represent calculation without using structural dip. 
Vertical positions of peak amplitudes are not aligned horizontally in (a and b). 
If structural dip is neglected, the centre of the analysis window falls at the red 
line (a) and the analysis window is a perfect cube. (c) GLCM-based energy in 
0° direction without dip guidance. (d) GLCM-based energy in 0° direction with 
dip guidance. In dip-guided computation the signal to noise ratio is higher 
and certain features can be better imaged (red arrows).

Figure 6 GLCM-based energy time-slice with superimposed coherence attrib-
ute. GLCM-based energy shows areas within the channel system, whereas 
coherence attribute shows channel edges.
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to Upper Miocene (Sarmatian or Pannonian age) channel 
system that has an average width of 130-300 m (426-984 ft) 
and an average thickness of 70 ms. Channel edges can easily 
be interpreted using coherence attributes, but these fail to 
give information about the channel interior. By using GLCM 
attributes the channel appears as a body of more or less 
uniform colours that strongly contrast with the surrounding 
facies (Figure 6).

Detection of directional variability
Anisotropy describes the directional dependencies of any 
property. Seismic anisotropy is the dependence of velocity 
on direction or upon angle (e.g., Crampin 1981, 1985; Lynn 
and Thomsen, 1990; Willis et al., 1986, Martin and Davis, 
1987; Thomsen, 1986; Alkhalifah and Tsvankin, 1995). 
Seismic anisotropy can be caused by spatial variation in 
sediments, the presence of fractures and fault zones, and 
by differences in pore fillings. The description of fractured 
zones is especially important for hydrocarbon exploration. In 
Figure 5, a GLCM-based energy attribute calculated in four 

of probability matrix. Haralick et al. (1973) proposed 
14 attributes based on this probability matrix. Soh and 
Tsatsoulis (1999) and Wang et al. (2010) developed ten 
additional attributes based on the GLCM. The calculated 
GLCM-based attributes are assigned to the centre point of 
the analysis window. This procedure is repeated for all sam-
ple points within the seismic data cube (Figure 4). Figure 2 
shows a two-dimensional synthetic image to illustrate the 
steps in GLCM-based attribute calculations.

For other attribute calculations the integration of dip 
guidance is very important. By integrating the volumetric 
dip, the input volume is warped along the seismic stratigra-
phy (Figure 5a and 5b) so the analysis window is no longer 
a rectangular cube. Integration of dip guidance results in 
much sharper images that are easier to interpret as signals 
from different seismic reflectors are not mixed. Integration 
of dip guidance also affects the range of values of the result-
ing attributes. Dip-guided GLCM attributes tend to have a 
wider range than attributes that are not dip guided (Figure 
5c and 5d).

Fields of application
The main application of GLCM is for seismic facies descrip-
tion. West et al. (2002) used GLCM-based attributes in 
combination with neural networks to describe details of 
channel facies. This information was then used to estimate 
net-to-gross ratios within interpreted channel structures. 
Gao (2007) and Angelo et al. (2011) also used GLCM to 
describe channel structures and the distribution of facies 
within these channels. We applied the GLCM method to a 
seismic survey from the Vienna Basin to describe a Middle 

Figure 7 GLCM-based energy attribute calculated in four different space 
directions. (a) 0 direction (east-west), (b) 90° direction (north-south), (c) 45° 
direction (northeast-southwest), (d) the 135° direction (northwest-southeast).

Figure 8 Workflow for seismic amplitude variability detection using GLCM-
based attributes: (A) Calculation of each GLCM-based attribute in four space 
directions (only four horizontal directions are shown). (B) Determination of 
minima and maxima values and their direction for each GLCM-based attrib-
ute. (C) Calculation of ratio between maximum and minimum, used to deter-
mine threshold value. (D) Application of threshold value to identify areas 
with higher directional variability and visualize only directions of minima 
and maxima.
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horizontal directions is shown. In the four images there are 
small variations in amplitude values, but all images appear 
more or less the same and it is nearly impossible to perceive 
any anisotropy. We have developed an automatic workflow 
(Figure 6) to distinguish between areas with a high degree of 
anisotropy from areas of low anisotropy (Eichkitz et al., 2015). 
In this workflow attribute responses from directional GLCM-
based attributes are compared. An attribute set is calculated 
based on these comparisons, providing information about 
directional behaviour. The exact same attribute response is 
rarely obtained for all directions. In some areas, the minimum 
and maximum values may be very similar and lead to an 
overestimation of anisotropy. To overcome this problem it is 
necessary to condition the output from step (B) to distinguish 
between areas having high directional variability from areas 
with low directional variability. In step (C) of the workflow, a 
ratio cube between maximum and minimum values for each 
GLCM-based attribute is calculated and a threshold value is 
manually determined. The threshold value is then used in step 
(D) to set all areas having a ratio below the threshold to no 
directional variability. In other words, areas with ratio values 
below the threshold are assigned an undefined anisotropy 
value, whereas the other areas are assigned the corresponding 
minimum, maximum, direction of minimum, and direction of 
maximum values.

A single GLCM-based attribute is not sufficient for 
detailed interpretations of seismic anisotropy. It is necessary 
to compute several GLCM-based attributes and combine these 
to form a comprehensive interpretation. It is then possible 
to determine areas that have greater directional variability, 
possibly caused by fracturing or related to changes in lithology 
or pore filling. Directional information from this analysis may 
help to determine fracture strike and dip.

Conclusion
Although texture attributes have not been used widely in seis-
mic interpretation, GLCM can provide important insight into 
the subsurface through attribute analysis. Different authors 
have shown that the GLCM is a useful tool for the description 
of seismic facies. Because GLCM-based attributes can be 
calculated in different directions, they can be used to determine 
directional variations in seismic data. This opens the door 
to differentiate between sedimentary facies and patterns of 
fracturing, including the delineation of fractured zones and 
their strike and dip.
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