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Mapping directional variations in seismic character using
gray-level co-occurrence matrix-based attributes

Christoph Georg Eichkitz!, Marcellus Gregor Schreilechner!, Paul de Groot?, and Johannes Amtmann'

Abstract

Texture attributes describe the spatial arrangement of neighboring amplitudes values within a given analysis
window. We chose a statistical texture classification method, the gray-level co-occurrence matrix (GLCM), and
its derived attributes, to produce a semiautomated description of the spatial arrangement of seismic facies. The
GLCM is a measure of how often different combinations of neighboring pixel values occur. We tested the ap-
plication of directional GLCM-based attributes for the detection of seismic variability within paleoriver features.
Calculation of 3D GLCM-based attributes can be done in 13 space directions. The results of GLCM-based attrib-
ute calculation differed depending on the chosen GLCM parameters (number of gray levels, analysis window,
and direction of calculation). We specifically focused on how the direction of calculation influenced the com-
putation of attributes, while keeping other parameters constant. We first tested the workflow on a 2D training
image and later ran on a real seismic amplitude volume from the Vienna Basin. Based on the GLCM-based
attributes, we could map the channel features and extract them as geobodies. Additionally, we generated a
new set of directional GLCM-based attributes to detect spatial changes in the seismic facies. By comparing
these directional attributes, we could determine areas within the channel features having higher directional
variability. Areas with higher tendency to directional variations might be associated with changes in lithology,

seismic facies, or with seismic anisotropy.

Introduction

Common seismic attributes such as complex trace
(Taner et al., 1979), coherence (Bahorich and Farmer,
1995), curvature (Marfurt and Kirlin, 2000), or spectral
decomposition attributes (Partyka et al., 1999) use
mathematical formulations to capture the geometry
or physical properties of the subsurface and can be
used to illuminate geologic features of interest. Texture
is defined by the spatial configuration of rock units and
is more diagnostic of and relevant to deformational fab-
rics, depositional facies, and reservoir properties than
an averaged acoustic property (Gao, 2011). The meth-
odology follows the way a seismic interpreter analyzes
seismic amplitudes and waveforms. Among many
methods available for texture analysis, we choose a
statistical texture classification method known as
the gray-level co-occurrence matrix (GLCM) (Haralick
et al., 1973) and its derived attributes to produce a semi-
automated description of the spatial arrangement of
seismic amplitude values. The GLCM was primarily de-
signed for texture classification of 2D images. It is a
method widely used in many application domains, such
as image classification of satellite imagery (e.g., Frank-

lin et al., 2001; Tsai et al., 2007), sea-ice images (e.g.,
Soh and Tsatsoulis, 1999; Maillard et al., 2005), mag-
netic resonance, or computed tomography images
(e.g., Kovalev et al., 2001; Zizzari et al., 2011). This meth-
odology has been applied to seismic data for the past 20
years (Vinther et al., 1996; Gao, 1999, 2003, 2007, 2008a,
2008b, 2009, 2011; West et al., 2002; Chopra and Alex-
eev, 2005, 2006a, 2006b; Yenugu et al., 2010; de Matos
et al., 2011; Eichkitz et al., 2013). To calculate GLCM-
based attributes on 3D seismic data, it is necessary
to adapt the method to work in a 3D space. The number
of possible directions increases in comparison with the
2D images. For this research project, we used four hori-
zontal directions (0°, 45°, 90°, and 135°) to determine
the directional behavior of seismic amplitude values.
The workflow was tested on a data set from the Vienna
Basin, Austria; the objective was to illuminate seismic
character variability within channel features.

Method

The GLCM is a measure of how often different com-
binations of neighboring pixel values occur in an image.
For a 2D image, the immediate neighboring pixels can
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Figure 1. (a) In a 3D case, the number of neighbors for one
sample point can be best explained by examining a Rubik’s
Cube. (b) The center of the Rubik’s Cube (the red box in panel
[b]) has in total 26 neighboring boxes. The boxes are aligned
in 13 directions. (¢) Analogous to this, a sample point in a seis-
mic volume has 26 neighbors aligned in 13 directions. In the
developed workflow, it is possible to calculate GLCM-based
attributes along a single direction, a combination of directions
(e.g., inline direction, crossline direction, etc.), or all direc-
tions at once (after Eichkitz et al., 2013).
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be analyzed in four different directions (0°, 45°, 90°, and
135°). The four directions can also be combined to form
an average GLCM. Such computation can eliminate the
influences of bed dip and azimuth to a certain degree
(Gao, 2007). In 3D data, the number of possible direc-
tions increases to thirteen. To illustrate this case, the
Rubik’s cube is used (Figure la-1c), which is built of
27 smaller cubes. The cube in the center, the turning
point in a Rubik’s Cube, is the reference point for which
the calculations are performed (Figure 1b). The center
point is surrounded by 26 neighboring cubes. If we take
the center point and draw lines from it to all neighbor-
ing cubes, we get 13 directions (see Figure 1¢). As in the
2D case, it is possible to calculate the GLCM in single
directions, combine several directions, or calculate an
average GLCM. Additionally, our algorithm integrates
apparent local structural dip of the data (dip steering,
e.g., de Rooij and Tingdahl, 2002). With dip steering, the
GLCM input volume is warped along the seismic stratig-
raphy by following a precalculated 3D dip field. One ad-
vantage of dip steering is that the input volume for the
GLCM computation does not mix signals from different
seismic packages, leading to sharper images that are
easier to interpret. For further information on the most
common methods to estimate structural dip, we recom-
mend the original works by Barnes (1996), Luo et al.
(1996), Marfurt et al. (1998), Bakker (2002), Hoecker
and Fehmers (2002), and Tingdahl and de Groot (2003).

The first step in GLCM calculation is the transforma-
tion of the seismic amplitude volume (usually stored in
32 bit floating point) into a gray-level cube. For seismic
data, 16 (4 bit) or 32 (5 bit) gray levels are usually re-
garded as sufficient. Calculations with a greater number
of gray levels do not result in any significant differences
in the computed attributes (Chopra and Alexeev, 2006a;
Gao, 2007). Calculations with more gray levels result
in only minor improvements in resulting images and
are costly because of long computation times. Despite
these issues, we believe that a higher number of gray
levels are important to improve the signal-to-noise ratio
(S/N), offering a better delineation of the seismic facies.
Enhancement of the S/N can be observed up to approx-
imately 512 (9 bit) gray levels. After that point, only mi-
nor changes are observable. We integrate a linked-list
approach (Clausi and Jernigan, 1998; Clausi and Zhao,
2002; Clausi and Zhao, 2003) to overcome computa-
tional performance issues. A linked list is a sequence
of nodes in which each node consists of a data part
and a reference to the next node. Using this approach,
nonzero matrix entries are skipped and calculation time
is no longer a function of the number of gray levels.
Only the size of the analysis window affects computa-
tion times.

From the GLCM, a series of textural attributes can be
derived. Haralick et al. (1973) originally introduce 14
attributes. Since then, a few more attributes have been
developed and published (e.g., Soh and Tsatsoulis,
1999; Wang et al.,, 2010). Prior to computing any
GLCM-based attributes, the GLCM is transformed by
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dividing each entry by the sum of all entries, expressing it
as a kind of probability matrix. The GLCM-based attrib-
utes can be divided into three general groups. First, the
contrast group includes attributes such as contrast,
homogeneity, and cluster tendency (Haralick et al., 1973;
Wang et al., 2010). The attributes in this group are basi-
cally a function of the probability of each matrix entry
and the difference between gray levels (¢ and 7). There-
fore, these contrast group attributes are related to the
distance from the GLCM diagonal. Values close to the
diagonal (where ¢ and j are the same) result in lower con-
trast, whereas the contrast increases as the distance
from the diagonal increases. In the sample image (Fig-
ure 2), contrast is lower for the 135° direction (Figure 2g)
than in the 45° direction (Figure 2f). For the 135° direc-

tion, the matrix entries are aligned around the diagonal
where ¢ and j are the same. Second, the orderliness
group includes attributes such as energy and entropy
(Haralick et al., 1973). Attributes in the orderliness group
measure how regularly gray-level values are distributed
within a given search window. Unlike the contrast group,
attributes in the orderliness group are solely a function
of the GLCM probability entries. Third, the statistics
group includes attributes such as mean and variance
(Haralick et al., 1973). These are the common mean
and variance calculated from the GLCM probabilities.
We generated a small 2D sample image to demonstrate
the GLCM calculation along different directions (Fig-
ure 2a). In this example, a northwest-southeast-trending
feature was modeled. Gray levels along the main feature

Figure 2. (a) Example for the calculation of
GLCM-based attributes using eight gray levels
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from a synthetic 2D gray-scale image. (b)

The gray-scales of the image correspond to
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are similar, and the largest variation occurs per-
pendicular to the main feature. Eight gray levels (3 bit)
were used (Figure 2b). The number of gray levels (V)
defines the rank of the square matrix (Figure 2¢). In the
example, the GLCM is a square matrix of rank eight. In
Figure 2d-2g, the results for GLCM calculations for four
directions are shown. Additionally, the results of the com-
bined GLCM calculation in all four possible directions are
shown in Figure 2h. Note the high number of zero values
inside the matrix, which heavily influences computation
times. With the use of a linked-list approach, we can over-
comethisproblem. The calculated GLCM-based attributes
energy, homogeneity, and cluster tendency are highest
when the calculation is done parallel (135° direction) to
the main feature in the tested image. Contrast gives the
highest values perpendicular to the main feature. Entropy
is smallest in the strike (45°) direction, whereas in other
directions, entropy values are higher but similar to each
other. From these results, we can see that the attribute
response is dependent on the strike of the main feature.
The directional behavior of the GLCM-based attributes

can thus be used to estimate variability of the seismic am-
plitude responses.

The input to generate GLCM-based attributes can be
seismic amplitude volumes, or any derived seismic
attribute volume (coherence, curvature, spectral de-
composition). Against this background, we developed
a workflow composed of four steps (Figure 3). Cur-
rently, the workflow for mapping directional variations
operates in 4 directions only, but we intend to extend
this to a full analysis of all 13 possible space directions.

The first step is the calculation of GLCM-based attrib-
utes in four separate space directions (0°, 456°, 90°, and
135°). By integrating dip steering methodology into
GLCM calculation, we can increase the S/N. In the sec-
ond step, we determine for each sample point and each
GLCM-based attribute the maximum and minimum val-
ues. Additionally, we store the direction in which maxi-
mum and minimum values occur for each attribute.
Information of maximum and minimum values and their
directions are stored in separate cubes. Subsequently,
we use this information to identify the direction of high-

Figure 3. The workflow for seismic ampli- a)
tude variability detection by using GLCM-

GLCM-based attribute calculation in four directions

based attributes is divided into four parts.
(@) The first part is the calculation of each b)

I
! !

GLCM-based attribute in four space directions
(in this example, only the four horizontal di-

Determination of
min and max values

Determination of
min and max directions

rections are used). (b) The second step is the
determination of minima and maxima values
and their direction for each GLCM-based
attribute. (c) In step 3, the ratio between maxi-

mum and minimum is calculated. The ratio is N\ 135
used to determine a threshold value. (d) The 1 oo
threshold value is applied in step 4 to identify
areas with higher directional variability and to % /45
visualize only these directions of minima and % . @
maxima. Ul ™ ey SR S e :
Direction of max values Direction of min values
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4
5
2
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est variation in the seismic data. Rarely do we get the
same attribute response in all directions, although mini-
mum and maximum values sometimes are very close to
each other. In these areas, we would overestimate the
directional variability in our seismic data. Therefore, it
is necessary to condition the output data to distinguish
between areas with high-directional variability and
areas with low directional variability. This is done in
steps three and four of the workflow. In step 3, we
calculate the ratio between maximum and minimum
values and set a manually determined threshold value
for each attribute. The threshold value is then used in step
4 to set all areas with a ratio below the threshold value
to have no directional variability. In areas above the
threshold, the minimum and maximum directions are
determined. By combining the calculated GLCM-based
attributes, we are able to determine areas that tend to have
lower directional variability from those areas prone to
have more directional variability.

Application to a channel system
within the Vienna Basin

We apply the workflow to a 3D seismic data set from
the Vienna Basin (close to the border between Austria
and Slovakia). The bin size of the cube is 25 X 25 m
(82 x 82 ft). At a depth of approximately 1000 ms, a me-
andering channel system was interpreted. The channel
deposits are most probably of Sarmatian or Pannonian
age (Middle to Upper Miocene), and have a width of
130-300 m (426-984 ft) and an average thickness of
70 ms. Strauss et al. (2006) describe similar features
in the southern Vienna Basin. The channel system is
clearly identified with the help of the coherence attrib-
ute (Eichkitz et al., 2012). We interpret the edges of the
channel as lineaments on several time slices (Figure 4)
and use the interpreted lineaments as guidance for the
interpretation of the GLCM-based attribute displays.
For comparison, the GLCM-based attributes (energy,
homogeneity, contrast, entropy, and homogeneity) were
computed in four directions (0°, 45°, 90°, and 135°) with
and without dip steering applied to the input seismic am-
plitude volume. Sixty-four gray levels were used for
GLCM-based calculation.

In the energy and cluster tendency attributes, the
channel system is well imaged (Figure 5) because the
surrounding rocks show very low, uniform values and
the channel filling has high values in both attributes. In
the homogeneity and entropy attributes, the channel
system is still visible, but it is more difficult to differen-
tiate the channel from the surrounding strata. The
homogeneity attribute is more difficult to interpret be-
cause the surrounding areas have many spots with re-
sponses similar to that inside the channel system. For
the contrast attribute, the interpretation of the channel
system is very difficult. No real differentiation between
the channel and the surrounding rocks is possible.

As noted, all attributes were calculated in four hori-
zontal space directions with and without dip steering.
In general, the results using dip steering have a higher

S/N (Figure 6), so we decided to use the results with dip
steering for the determination of spatial variation in
seismic data. In the energy attribute display, large var-
iations are observed in all four space directions. Visual

?

0 emblance-based coherence 1

Figure 4. In the tested data set, multiple channel features are
observed. To visualize these channel features and to interpret
the channel edges, coherence time slices were used (Eichkitz
et al., 2012). In panel (a) is a time slice of the amplitude and in
panel (b) is a time slice of semblance-based coherence. The
interpretation of the channel edges is displayed in panel (c).
Coherence interpretation is overlain on all GLCM-based attri-
bute plots.
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analysis of these four different images (Figure 7) leads
to the conclusion that calculation in the inline direction
gives the highest values for this attribute. According to
theory and supported by the test image (Figure 2), high-
energy values can be interpreted as the direction in
which the least variation occurs. The 135° direction
(northwest-southwest) generally shows the lowest en-
ergy response. This can be interpreted as the direction

a)
0.35

GLCM-based energy

0.03

© GLCM-based cluster tendency

50

in which the highest variation in seismic data response
is present.

Ratio cubes for each attribute volume were gener-
ated in the next step. For each GLCM-based attribute,
the maximum value is divided by the minimum value.
Based on these ratio cubes, we manually set the thresh-
old values. For energy and entropy, a threshold value
of 1.2 is best for illuminating the channel interior. For
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Figure 5. GLCM-based attributes calculated along 0° direction (east—west): (a) Energy, (b) contrast, (c) homogeneity, (d) entropy,
and (e) cluster tendency. The channel structure can clearly be seen in the energy and cluster tendency attribute. The contrast
attribute in this direction reveals little information about the channel structure. In panel (f) , the coherence time slice is shown once

more for comparison reasons.
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homogeneity and cluster tendency, a threshold value of
1.1 was used. Using these values, we produce the final
images of direction of maximum and minimum GLCM-

a) b)

trace,, trace,, trace,, trace,, trace, trace,, trace,, trace,, trace,., trace,,

)Ly byt

I,

P2 bt

trace,, trace,, trace,, trace, trace,, trace,, trace,, trace.,

0.03 GLCM-based energy

b)

45° 2

90° I

0.03 GLCM-based energy

B e Sy T

based attribute values. Figure 8 shows the direction
of maximum values. Within the channel features, the
maximum values mostly occur in the 0° and 90° direc-

Figure 6. An important step in seismic attrib-
ute calculation is to take the structural dip
into account. For this purpose, we determine
the structural dip by using a complex trace
analysis, a discrete scan, or a gradient struc-
ture tensor approach. In this work, the discrete
scan was found to produce best results. In pan-
els (a and c), the images represent the calcula-
tion without using the structural dip. In panels
(a and b), several seismic traces are shown.
Clearly, one can see that the vertical positions
of peak amplitudes are not aligned in one single
horizontal line. By neglecting the structural dip
of the data, the center of our analysis window
would fall at the dark gray line in panel (a) and
our analysis window would be a perfect cube.
Calculation of GLCM-based energy in the 0° di-
rection (c) without steering and (d) with steer-
ing. In the steered computation, the S/N is
higher and certain features can better be im-
aged (see the gray arrows).

Figure 7. GLCM-based energy attribute cal-
culated in four different space directions. In
panel (a), the zero direction (east-west), in
(b), the 90° direction (north-south), in (c),
the 45° direction (northeast-southwest), and
in (d), the 135° direction (northwest-south-
east) are shown.
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Figure 8. Direction of maximum values for four GLCM-based Figure 9. Direction of minimum values for four GLCM-based
attributes: (a) energy, (b) homogeneity, (c) entropy, and attributes. (a) energy, (b) homogeneity, (c) entropy, and
(d) cluster tendency. Additionally, in panel (e), an amplitude (d) cluster tendency. Additionally, in panel (e), an amplitude
time slice is shown. time slice is shown.
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tions. Only in a few spots, especially in the western
area, does the 135° direction (northwest—southeast)
dominate. In Figure 9, the directions of minimum values
are shown. In the minimum value cubes, the 45° direc-
tion (northeast-southwest) dominates over the entire
image and the 135° direction is present only in a few
parts of the image. The 0° and 90° directions rarely oc-
cur in the minor direction cubes. Based on Figures 8
and 9, most spatial variation in seismic character within
the channel features can be found in the 45° direction
(northeast-southwest). In contrast, we see the lowest
spatial variations in the 90° direction. Within the project
area, no well log information is available, so it is not
possible to directly verify the interpretation.

Conclusions

The results of GLCM-based attribute calculations
may differ depending on the GLCM parameters (the
number of gray levels, analysis window, and direction
of calculation) chosen. In this study, we fix the number
of gray levels at 64, the analysis window for all calcula-
tions at 3 X 3 x 11, and only varied the direction of cal-
culation (0°, 45°, 90°, and 135°). By using this approach,
we obtain a set of cubes containing direction-dependent
values for each attribute. Based on these directional at-
tributes, it is possible to determine directions in which
the specific attribute exhibits maximum or minimum
values. Maxima and minimums are correlated with di-
rections in which the seismic response shows the high-
est and lowest variations. The workflow was applied
to a data set from the Vienna Basin with the objective
of illuminating river/channel features. In this case study,
the channel features can clearly be identified with the
help of the GLCM-based attributes. By applying direc-
tional GLCM calculation, it is possible to map areas with
higher and lower tendencies to have directional variabil-
ity in attribute response. These attribute responses may
be correlated with anisotropy in the channel fillings.
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