

Visualizing anisotropy in seismic facies using stratigraphically constrained, multi-directional texture attribute analysis

AAPG Hedberg Research Conference JUNE 1-5, 2014, HOUSTON, TEXAS, USA

Christoph Georg Eichkitz¹, Paul de Groot² and Friso Brouwer³

¹Joanneum Research – Austria ²dGB Earth Sciences – The Netherlands - Presenter ³Formerly dGB Earth Sciences, currently Ikon Science

- Introduction
- What's New in this Work
- Examples
- Conclusions & Further Work

• Orginate from image processing (Haralick et al., 1973)

• Aim to describe the roughness or smoothness of an image

• Based on the Grey Level Co-occurence Matrix (GLCM)

 Used in seismic facies interpretation and to highlight geomorphological features

Beunaldeetwork teaseide Valvatorm Begrændetion is sejæpidattributes seichnissue toergy, Siseallize seismic Deteemposition Components and

Waveforms are Attributes not suited in 3D mode.

Definition: The GLCM is a tabulation of how often different combinations of pixel brightness values (grey levels) occur in an image

*Adapted from Mryka Hall-Beyer's web pages: http://www.fp.ucalgary.ca/mhallbey/tutorial.htm

GLCM Texture Attributes

- Contrast Group
 - Measurements based on the distance from the GLCM diagonal

GLCM Texture Attributes

- Orderliness Group
 - Measurements of how organized the GLCM is

GLCM Texture Attributes

- GLCM Statistics Group
 - Standard statistical parameters computed from the GLCM

- Introduction
- What's New in this Work
- Examples
- Conclusions & Further Work

Each seismic cell has 26 neighbours allowing for 13 directions to analyze

dGB

Dip-steered Analysis

Concept of dip-steering: the seismic inputs for the GLCM are extracted along a three-dimensional stratigrahic slice by following the precalculated dip field.

(dhati) i fates and the second and t

dGB

- Introduction
- What's New in this Work
- Examples
- Conclusions & Further Work

The Effect of Dip-Steering

GLCM Correlation

Non Dip-Steered

Dip-Steered

Synthetic example

Synthetic example

GLCM

Synthetic example

Vertical Occurrences

Attributes

Synthetic example

Diagonal 45 Occurrences

GLCM

Attributes

GLCM

Synthetic example

Diagonal 135 Occurrences

Attributes

Synthetic example

All Directions Occurrences

GLCM

Attributes

Lessons Learned

Average values for all texture attributes

Highest Cluster Tendency

Highest Contrast; Lowest Homogeneity

Lowest Energy; Lowest Cluster Tendency

٥°

Highest Entropy

2D Example

Channels Vienna Basin

Coherency-based Semblance

Interpretation

dGB

Directional Energy

dGB

- Introduction
- What's New in this Work
- Examples
- Conclusions & Further Work

Conclusions

- Texture Attributes are making a **comeback** in seismic interpretation
- Original applications are seismic facies analysis and visualization of geomorphological features
- **Dip-Steering** constrains the analysis to **stratigraphic layering** and generates higher signal-to-noise responses for texture attributes
- **Directional** analysis reveals **anisotropy** in the **image**
- Dip-Steered, Directional Texture Attributes have potential for analyzing anisotropy in rock properties and thus be used in the analysis of fracture density, stress fields, fluid flow paths, ...

Further Work

 Joanneum Institute has developed a workflow to help interpret variations in directional response

• Visualization of anomalous responses in various directions

This workflow will be extended from 2D to 3D

Acknowledgment

The texture attributes shown in this paper were developed independently by Joanneum Research and dGB Earth Sciences as plugins to OpendTect, the open source seismic interpretation system. OMV is acknowledged for funding Joanneum's research project and for giving permission to publish these results.

OMV, Joanneum and dGB recently agreed that Joanneum's texture attribute plugin will in future replace dGB's plugin and that the software will be released as an open source (free) plugin to OpendTect.

ild: