Visualizing anisotropy in seismic facies using stratigraphically constrained, multi-directional texture attribute analysis

AAPG Hedberg Research Conference JUNE 1-5, 2014, HOUSTON, TEXAS, USA

Christoph Georg Eichkitz ${ }^{1}$, Paul de Groot ${ }^{2}$ and Friso Brouwer ${ }^{3}$
${ }^{1}$ Joanneum Research - Austria
${ }^{2}$ dGB Earth Sciences - The Netherlands - Presenter
${ }^{3}$ Formerly dGB Earth Sciences, currently Ikon Science

- Introduction
- What's New in this Work
- Examples
- Conclusions \& Further Work

Texture Attributes

- Orginate from image processing (Haralick et al., 1973)
- Aim to describe the roughness or smoothness of an image
- Based on the Grey Level Co-occurence Matrix (GLCM)
- Used in seismic facies interpretation and to highlight geomorphological features

BRumaddetwork tearecesvalvesorm iBegprondetion is æ仿pidaætributes secthn郎iEtergy, Sibcelliab seismic Damosnposition Components and Tixturerms are Ant sutted in 3D mode.

Grey Level Co-occurrence Matrix*

Definition: The GLCM is a tabulation of how often different combinations of pixel brightness values (grey levels) occur in an image

0	0	1	1
0	0	1	1
0	2	2	2
2	2	3	3

Image

$\frac{0}{\frac{1}{N}}$		Neighbouring pixel value			
		0	1	2	3
$\overline{\text { ¢ }}$	0	4	021	0,2	003
$\stackrel{\square}{0}$	1	120	141	102	103
$\frac{\bar{\omega}}{\frac{\omega}{\omega}}$	2	210	201	262	213
$\stackrel{\Phi}{\mathbb{I}} \downarrow$	3	300	301	312	$3 ¢ 3$

CaVribNOadu@enoesences

$\frac{\stackrel{0}{D}}{\sigma}$		Neighbouring pixel value			
		0	1	2	3
$\overline{\text { ¢ }}$	0	0,167	0,083	0,041	0,000
$\stackrel{\circ}{\circ}$	1	0,083	0,167	0,000	0,000
$\frac{\overline{0}}{\underline{\omega}}$	2	0,041	0,000	0,250	0,041
$\stackrel{\Phi}{\mathbb{\sim}} \downarrow$	3	0,000	0,000	0,041	0,083

Normalize to "probabilities"

GLCM Texture Attributes

- Contrast Group
- Measurements based on the distance from the GLCM diagonal

Elorriestandity $3 \times 33 x \times-8 ; 8], 8] \$$ DS
$\underbrace{4}$

GLCM Texture Attributes

- Orderliness Group

- Measurements of how organized the GLCM is

Angulantiotyynd Moment 3×3 xx-8,8L-8,8], DS

GLCM Texture Attributes

- GLCM Statistics Group
- Standard statistical parameters computed from the GLCM

GLCM GtaCMandratustition
$3 \times 3 \times 3[\times 8884,[5858]$, DS

- Introduction
- What's New in this Work
- Examples
- Conclusions \& Further Work

Directional Analysis

Each seismic cell has 26 neighbours allowing for 13 directions to analyze

Dip-steered Analysis

Concept of dip-steering: the seismic inputs for the GLCM are extracted along a three-dimensional stratigrahic slice by following the precalculated dip field.

(diptiph

- Introduction
- What's New in this Work
- Examples
- Conclusions \& Further Work

The Effect of Dip-Steering

GLCM Correlation

The Effect of Directional Analysis

Synthetic example

3	1	3	4	5	6	8
4	1	1	2	4	5	7
4	2	1	1	3	3	6
4	3	1	1	1	2	4
4	4	2	1	1	1	1
7	6	5	3	1	1	1
8	7	6	5	2	3	5

(b)

(c)

Grey-scale image
Grey-scale values
GLCM

The Effect of Directional Analysis

Synthetic example

Horizontal Occurrences

Energy:
Contrast:
Homogeneity:
Entropy:
Cluster Tend
0.077
1.609

The Effect of Directional Analysis

Synthetic example

Vertical Occurrences

Energy
Contrast:
Homogeneity:
Entropy:
Cluster Tend.

The Effect of Directional Analysis

Synthetic example

Attributes

The Effect of Directional Analysis

Synthetic example

Attributes

The Effect of Directional Analysis

Synthetic example

2	1	2	3	4	5	6	7	8
1	0.21	0.04	0.05	0.02	0.01	0.00	0.00	0.00
2	0.06	0.00	0.03	0.01	0.01	0.01	0.00	0.00
3	0.06	0.03	0.01	0.03	0.02	0.01	0.01	0.00
4	0.03	0.03	0.03	0.04	0.02	0.02	0.01	0.00
5	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01
6	0.00	0.01	0.01	0.01	0.02	0.01	0.01	0.01
7	0.00	0.00	0.00	0.01	0.01	0.02	0.01	0.01
8	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00

Energy:

Contrast:
Homogeneity: 2.492
Entropy:
Cluster Tend. 39.077

All Directions Occurrences
GLCM
Attributes

Lessons Learned

Highest Cluster Tendency

Highest Contrast; Lowest Homogeneity

Lowest Energy; Lowest Cluster Tendency

Highest Entropy

2D Example

Channels Vienna Basin

Contrast

Entropy

Semblance + Interpretation

Directional Energy

Semblance + Interpretation

Dip

- Introduction
- What's New in this Work
- Examples
- Conclusions \& Further Work

conciusions

- Texture Attributes are making a comeback in seismic interpretation
- Original applications are seismic facies analysis and visualization of geomorphological features
- Dip-Steering constrains the analysis to stratigraphic layering and generates higher signal-to-noise responses for texture attributes
- Directional analysis reveals anisotropy in the image
- Dip-Steered, Directional Texture Attributes have potential for analyzing anisotropy in rock properties and thus be used in the analysis of fracture density, stress fields, fluid flow paths, ...

Further Work

- Joanneum Institute has developed a workflow to help interpret variations in directional response
- Visualization of anomalous responses in various directions
- This workflow will be extended from 2D to 3D

Acknowledgment

The texture attributes shown in this paper were developed independently by Joanneum Research and dGB Earth Sciences as plugins to OpendTect, the open source seismic interpretation system. OMV is acknowledged for funding Joanneum's research project and for giving permission to publish these results.

OMV, Joanneum and dGB recently agreed that Joanneum's texture attribute plugin will in future replace dGB's plugin and that the software will be released as an open source (free) plugin to OpendTect.

