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1 General
In this document concepts and mathematical foundations are given on which some
important dGB-GDI tools and functions are based. The document is organised in a
number of completely independent chapters, each with its own reference list.

1.1 Acknowledgement
The Chapter on Monte Carlo statistics was published in Geophysics (de Groot et. al.,
1996). The mathematical formulation originates from Dr. Frans Floris of NITG-
TNO. The neural networks Chapter is taken from a PhD thesis (de Groot, 1995). The
mathematical formulation is from Prof. dr. ir. Jacob Fokkema. The Chapter on fluid
replacement is a compilation from various sources in the open literature.
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2 Geology-Driven-Integration

2.1 Integration framework

In the geo-sciences interpretations are based on a combination of data and
knowledge. Data is gathered in different dimensions with widely varying scales and
accuracies. For a quantification all available information must be combined (Fig. 2.1).
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Figure 2.1: dGB-GDI has been designed to quantify geo-scientific
interpretations. Tools are available for integrating and
manipulating various types of information.

In dGB-GDI data and knowledge are combined via the Integration framework .
This is a generic description of the subsurface in terms of geological objects with
attached physical properties (non-numeric features such as seal, waste, or reservoir
rock) and quantities (numeric features such as sonic, density, porosity, permeability
etc.). The geological objects (or framework units) are the building blocks for
describing different geological models (in this case wells). The models are called
realisations of the framework (Figure 2.2).
The objects in a framework are ordered in a tree corresponding to a hierarchical
ordering system (Figure 2.3). Each object is given a full name and code. Both are
user-defined. The codes (UnitIDs) are used for identifying and manipulating the data
at the natural (geological) scale levels. Any hierarchical system used in sedimentary
geology can be projected into dGB-GDI and there be combined with any property and
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quantity of interest. There are no restrictions in the software with respect to the scale
levels, nor to the properties and quantities. Both are completely user-defined.The
integration framework is dGB- GDI’s solution to the problem of integration of geo-
scientific information. A stratigraphic model, in which geological objects have been
defined in a hierarchical order, forms the basis. Realisations of the integration
framework (wells) can be manipulated at the natural (stratigraphic) scale levels
defined in the framework.
The concept is best explained by an example. Suppose we wish to study a geological
setting with intercalating sands and shales. These rock-units can be grouped into a
larger unit, say a member (which can also be grouped with other members into a
formation and so on. For the sake of this argument we will restrict ourselves to the
member level). Let us also assume that we are interested in studying two
petrophysical quantities, e.g. sonic and density.
In a generic sense we are dealing with three objects in a hierarchical ordering system:
member, sand and shale. If we attach the quantity thickness to all objects and the
quantities sonic and density to the objects sand and shale, we have defined an
integration framework. With this generic description we can now describe any
sequence of sands and shales with associated sonic and density log responses in any
detail required (Fig. 2.2).
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Figure 2.2: Integration framework comprising three objects in a hierarchical
system: member, sand and shale. The quantity thickness has been
attached to all objects. Sonic and density quantities have been
attached to the sand and shale objects. With this generic
description any  sequence of intercalating sands and shales with
associated sonic and density logs can be described in any detail
required. Some example ‘realisations’ are shown.
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Figure 2.3: Examples of hierarchical ordering systems used in sedimentary
geology.

The hierarchy in the integration framework corresponds to a stratigraphic hierarchy.
Unfortunately, in sedimentary geology many different hierarchical ordering systems
are used (Fig 2.3). The choice of ordering system depends of the type of geoscientific
study. For a general-purpose tool like dGB-GDI this implies that for each study the
user must be completely free to determine the ordering system as well as the kind of
detail (scale levels) that is required. In the framework, the stratigraphic setting is
defined in terms of geological objects called Framework units, which are ordered in a
tree (Fig. 2.4).
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Figure 2.4: Part of an integration framework. It is defined in three steps:

•  a dictionary defines the properties and quantities to be studied
•   geological objects are defined in a tree reflecting a hierarchical

ordering system
•   selected properties and quantities are attached to each of the

objects.

In the figure the attachments of the object ‘Carbonate’ are shown.
The objects in the integration framework tree can be denoted nodes
and leaves, or parents and children. Nodes and leaves refer to the
position in the tree with a leaf always being at the smallest scale-
level. Parents and children refer to inheritance with a parent
always at a larger scale-level than its children.

A second requirement for a general-purpose quantitative interpretation tool is that also
complete freedom must exist in the kind of data to be studied. In dGB-GDI the user
defines himself which properties and quantities are to be studied. A distinction is
made between properties and quantities. Properties are non-numeric features used to
classify the data. For example a rock can be classified a ‘seal’, a ‘reservoir’ or a
‘waste’. Quantities are features to which a value or a probability can be assigned.
Quantities are, for example, the acoustic impedance, the thickness, the porosity, the
permeability etc. Properties and quantities in dGB-GDI are defined in the “Framework
Dictionary” window of the Dictionary option under Geology menu.
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The integration framework is completely defined when the user has selected which
properties and quantities from the dictionary must be attached to each of the
geological objects defined in the tree. These geological objects are the building blocks
for constructing stratigraphic models with attached physical properties and quantities.
These models are called ‘realisations’ of the integration framework. They are either
descriptions of deterministic data (factual wells) or they are simulated (see 2.1
Pseudo wells).
Note that in the realisations, quantity values can be inherited from the geological
objects at a larger scale levels. In order to use this feature the quantity must be
attached in the framework to the parent unit and possibly to some of the children. If
different values are given for a parent and a child, the child value will prevail. Each
framework unit has a full reference name and a unit code (a user-defined mnemonic).
In realisations of the integration framework the unit codes are used to give each
object a unique identifier. This UnitID is a concatenation of unit codes separated by a
dot ('.'), possibly followed by a comma (',') and a modifier value (see below). Each
code can have an occurrence number attached between parentheses. Examples:

•  lze.main.salt (equivalent to 'lze(1).main(1).salt(1)')
•  lze.main(3).anh
•  lze.main.ss(2),Gas

Unit IDs are used throughout the system for data identification and manipulation, see
e.g. the Features module under Wells menu.
There are certain geological phenomena (such as fractured or fluid-filled zones in a
stratigraphic column etc.) which cut right through the geometrical description in
terms of framework units. In general, one can consider these phenomena as a result
of circumstances which are not intrinsic to the framework unit. Very often the
geoscientists are interested in the analysis and simulation of these phenomena e.g. in
order to study the effects of hydrocarbons. In dGB-GDI such phenomena are
described through a special type of features, called Modifiers  and Overlay-
quantities. They are defined in the framework dictionary (Dictionary module under
Geology menu). Modifiers indicate that certain petrophysical quantities differ from
their standard values due to the occurrence of a given geological phenomenon (e.g.
fractured or fluid-filled zones etc.). Overlay-quantities describe the extent of the
geological volume affected by the phenomenon.
The Modifiers and Overlay-quantities are used in the stochastic simulations of
pseudo-wells in order to input corrected values of the above mentioned petrophysical
quantities in the Gassmann Equation (Apply Gassmann Equation module under the
Utilities menu).

The use of the Modifiers  and the Overlay-quantities  in the classification of the
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integration framework units  and in the well simulations are given in Section 5.1 of
this issue.
In realisations, modifier values are recognised by the Unit ID extension (e.g. ,Gas).
Features can be extracted relative to the modifier values (e.g. average porosity gas-
filled sands). When factual wells are entered into the system (Edit well module under
Wells menu), the units that are affected by the modifier (e.g. units within the gas
column) are specified.
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2.2 Pseudo-wells
Pseudo-wells are primarily used in seismic applications. In general, they are used to
quantify seismic measurements in terms of geological and/or petrophysical
probabilities. For example, in lateral prediction studies pseudo-wells are used to find
relationships between seismic features and underlying well features. In seismic
pattern analysis they are used to relate the patterns to geological / petrophysical
phenomena.

                                                             

Figure 2.5: Sensitivity analyses: ten pseudo-wells in which the thickness of one
unit varies from 0 to 90 m with steps of 10 m. All other quantities
remain unchanged. Only impdance logs are shown.

Other applications are sensitivity analyses and feasibility studies. The objective in
sensitivity analysis is to get a feel for the seismic response. Well information is varied
in a controlled way and the corresponding seismic signals are visually inspected
(Figs. 2.5 and 2.6). This is non-quantitative. Feasibility studies, in contrast are
quantitative exercises. We want to establish how far the seismic data can be pushed,
i.e. what information can be extracted from the seismic signals and what information
is beyond the resolution.
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Figure 2.6: Synthetic seismic traces corresponding to the pseudo-wells shown in
Fig. 2.5. The tick mark indicates the position of the reference time.
In this case the base of the unit that was varied.

Some workers define pseudo-wells as stochastically simulated reflectivity sequences,
others as simulated stratigraphic sequences and yet others as simulated logs. For the
applications we have in mind we need to simulate all this information simultaneously.
In dGB-GDI pseudo-wells are stochastic realisations of the integration framework.
They are one-dimensional stratigraphic profiles with attached physical quantities
(logs) but without spatial information. They are described in Unit IDs with attached
values for thickness and other quantities (sonic, density etc.).

Pseudo-wells belong to a well group that was generated by the Simulate wells
module (Wells menu). In general, synthetic seismic traces will be generated for the
wells in a well group by the Synthetics  module (Seismic menu). Operating in this
way, high resolution well data and low(er) resolution seismic data is combined. The
resulting integrated dataset can be used in various ways to analyse and quantify
seismic data (de Groot, 1995).Input to the simulator consists of rules and constraints
combined with stochastic information attached to integration framework units.
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Pseudo-wells are constructed as follows:

• A stratigraphic profile is constructed by selecting framework units and their
thicknesses.

• If modifiers and overlay-quantities were specified, these are simulated (e.g. Gas
Column). The Unit IDs are updated accordingly ( e.g. extension , Gas)

• Quantities are simulated for each of the units.
• Derived quantities (i.e. quantities specified in formulas) are calculated.

The results of generalised Markov chain analysis of real wells (Sequences module
under Analysis menu) can be used by the pseudo-well simulator in order to generate
pseudo-wells with similar stacking patterns.

The algorithm supports many different options for simulating quantities. For example,
a value can be drawn from a specified probability distribution function, it can be
calculated from other quantities, or it is varied in a controlled way. When the value is
drawn from a probability distribution function, the quantity is a stochastic variable
which can be correlated with any other stochastic variable in the simulator.
For example, suppose sonic and density logs have a negative correlation. In other
words large density values correspond to small sonic values. In the algorithm this
behaviour can be simulated by specifying a negative correlation coefficient between
density and sonic quantities. Suppose, the density value is drawn first, then the
algorithm updates the specified probability distribution function for the sonic quantity
according to the specified correlation coefficient. The sonic value is now drawn from
the updated distribution.  Each quantity to be simulated is evaluated by the algorithm
against the specified constraints. In this way only realistic values are accepted. For
details on the mathematics, see de Groot et.al. (1996).
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3 Artificial neural networks

3.1 General
Artificial neural networks, or connectionist models as they are sometimes referred to,
have been inspired by what is known as the 'brain metaphor'. This means that these
models try to copy the capabilities of the human brain into computer hardware or
software. The human brain has a number of properties that are desirable for artificial
systems (e.g. Schmidt, 1994):

• It is robust and fault tolerant. Even if nerve cells in the brain die (which is known
to happen every day), the performance of the brain does not deteriorate
immediately.

• It is flexible. This means that the human brain can adjust itself to new situations
and can learn by experience.

• It can deal with information that is inconsistent, or contaminated with noise.
• It can handle unforeseen situations by applying knowledge from other domains

and extrapolating this to new circumstances.
• It can deal with large amounts of input data and quickly extract the relevant

properties from that data.
• It is highly parallel, hence it has a high performance.

Neural network research started in the forties. McCulloch and Pitts (1943) described
the logical function of a biological neuron. They described that the transmission of
neural signals is an all-or-nothing situation. A neuron fires only, if the cell has been
stimulated above a certain threshold. The output signal will, in general, have a
constant strength. In their paper, McCulloch and Pitts, described that networks
consisting of many neurons might be used to develop the universal Turing machine (a
kind of computer described by Turing (1937) that could, in principle, solve all
mathematical problems). Research in neural networks was suddenly stopped
following a publication by Minsky and Papert (1969). In this paper, it was shown that
a relatively simple problem (the so-called XOR-problem) could not be solved by the
linear algorithms used at the time. The major breakthrough which re-launched the
interest in this technique has been the discovery in the eighties of a non-linear
optimisation algorithm overcoming the previous limitations (Rumelhart et. al, 1986).

Neural networks have emerged in the last decade as a promising computing technique
which enable computer systems to exhibit some of the desirable brain properties.
Various types of networks have been applied successfully in a variety of scientific
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and technological fields. Examples are applications in industrial process modelling and
control, ecological and biological modelling, sociological and economical sciences, as
well as medicine (Kavli, 1992). Within the exploration and production world, neural
network technology is now being applied to geologic log analysis (Doveton, 1994)
and seismic attribute analysis (Schultz, 1994).

In dGB-GDI neural networks are used for pattern recognition. Three approaches can
be recognised in neural network pattern recognition (Lippmann, 1989): supervised
training, unsupervised training and combined supervised-unsupervised training.
Supervised training approaches require the existence of representative datasets.
Unsupervised techniques find structure in the data themselves, thereby extracting the
relevant properties. In dGB-GDI Multi-Layer Perceptrons and Radial Basis Function
networks are available for the supervised training approach. Unsupervised Vector
Quantisers are available in the unsupervised mode. These networks are introduced in
the following sections.

3.2 Multi-layer perceptrons (MLP)
The most general and most widely used neural network model is the 'multi-layer
perceptron (MLP)'. The basic building block of this model is the perceptron (Fig.
3.1), a mathematical analogue of the biological neuron, first described by Rosenblatt
(1962).

dendrites

cell body
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electrical 
pulse
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yL

1

y2

w1

w2

wL

W (y) A (W)

                                                             
Fig. 3.1 A biological neuron and a Perceptron
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The mathematical expression of the biological neuron can be written as an activation
function A  applied to a weighting function W , defined as:

 W (y) = wi yi
i=0

L
∑ , (3.1)

where:
y  is the neural network input vector written as yi  with i = 1,..., L  and weighting
vector wi  with i = 1,..., L .

The activation function of the classical perceptron (Fig. 3.2a) can now be written in
the following form:

A(W) =
1 W > 0
0 W ≤ 0

 
 
 

. (3.2)

In MLPs the binary activation function is often replaced by a continuous function.
The most widely used activation function is the sigmoid function (Fig. 3.2b). This
function has the following form:

A(W ) = 2
1 + exp −W( )

− 1. (3.3)
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Fig. 3.2 Different activation functions for MLP networks as supported in
dGB’s software. The prime-tangent hyperbolic function was used in
this project. This function has the same mathematical expression as
the tangent hyperbolic function but the update rules differ (see
below).

Other activation functions supported by the software are the linear, ramp and tangent
hyperbolic functions. The linear function (Fig. 3.2c) is defined as:

A(W ) = W . (3.4)

The ramp function (Fig. 3.2d) is given by:

A(W ) =
−1 W < −1
W −1≤ W ≤ 1
1 W > 1

 
 
 

  
. (3.5)
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The tangent hyperbolic function (Fig. 3.2e) is written as:

A(W ) = exp W( )− exp −W( )
exp W( )+ exp −W( ). (3.6)

Two other activation functions are supported in dGB’s software: the prime-sigmoid
and prime-tangent hyperbolic. These functions have the same mathematical
expressions as equations (3.3) and (3.6), respectively. The training algorithm treats
the two types of functions differently. For the sigmoid and tangent hyperbolic
functions, the derivative is used to update the weighting vector (Rich and Knight,
1991). For the prime-sigmoid and prime-tangent hyperbolic functions an offset is
added to the absolute value of the derivative. This is done exclusively to avoid
saturation problems during learning, where saturation means that continued learning
does not lead to improved network performance. This modified procedure is used to
update the weighting vector.
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flow

processing 
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Fig. 3.3 Schematic representation of a feed-forward layered neural

network, such as a Multi-Layer Perceptron and a Radial Basis
Function network.

In a MLP the perceptrons are organised in layers (Fig. 3.3). In its simplest form,
there are three layers; an input layer, a hidden layer and an output layer. There are no
connections between neurons belonging to the same layer. The data flow between the
layers is feed-forward. MLPs are trained on a representative dataset. This is a form
of supervised learning. Known examples, consisting of input patterns and
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corresponding output patterns, are repeatedly offered to the network during the
training phase. The 'back-propagation', learning, algorithm that is widely used to train
this type of network attempts to minimise the error between the predicted network
result and the known output by adjusting the weights of the connections. The
algorithm was derived independently by a number of researchers. The modern form
of back-propagation is often credited to Werbos (1974), LeCun (1985), Parker
(1985) and Rumelhart et. al. (1986). A fast variation of backpropagation is given by
Fahlman (1988).

MLPs have two properties of interest: abstraction and generalisation. Abstraction is
the ability to extract the relevant features from the input pattern and discard the
irrelevant ones. Generalisation allows the network, once trained, to recognise input
pattern which were not part of the training set.



dGB-GDI Concepts & Theory 20

3.3 Radial Basis Function Neural Networks (RBF)
Radial basis functions have been used for data modelling (curve fitting) by many
researchers, e.g. Powell (1987) and Poggio and Girossi (1989). Recently these
functions have been put in a neural network paradigm in what is called Radial Basis
Function (RBF) Neural Networks (Broomhead and Lowe (1988), Moody and Darken
(1988), Lee and Kil (1988), Platt (1991)). Schultz et.al. (1994) applied RBF networks
in a seismic reservoir characterisation study.
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o1
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Fig. 3.4 Schematic representation of a Radial Basis Function network
for the case of a single input variable, two basis functions and
one output variable.

RBF networks have the same feed-forward layered architecture as MLP networks
(Fig. 3.2), but the weighting function W  and the activation function A  are different.
With RBF networks, there are only weights between output layer and hidden layer
(Fig. 3.4). Each node in the hidden layer has a unique function, called the basis
function. For the simple network of Fig. 3.3 with a single input, single output and
two basis functions, the output is given by the sum of the two basis functions, each
multiplied with its own weighting factor. In principle, any type of function can be
used to act as basis function. For example, spline functions are used (Kavli, 1992),
but the identification RBF network, applies only if radial basis functions are used.

Radial basis functions give local support to data points. The output of the hidden
nodes, peaks when the input is near the centroid of the node, and then falls of
symmetrically as the Euclidean distance between input and the centroid of a node
increases (Fig. 3.5).  The consequence of this behaviour is that RBF networks are
good for data interpolation, but not good for data extrapolation.

Several different radial basis functions are in use, with the Gaussian function (Fig.
3.5a), being the most widely used. If the radial basis centre R  is defined as:
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R =
yi − µ i( )2

σi
2

i=1

L
∑ , (3.7)

where:
µ i  represents the centre location of each basis and σi  indicates a scaling of the
width of each basis, then the Gaussian activation function is given by:

A R( ) = exp − R2

2
 

 
 

 

 
 . (3.8)

Multiplication of the activation function A(R)  with a weighting factor w  then yields
the output o  (Fig. 3.4).

Another widely used RBF function is the so-called Inverse Multi-Quadratic Equation
(IMQE, Fig. 3.5b), defined as:

A R( ) = 1

R + k 2
, (3.9)

where:
k  is an empirically determined smoothing factor (default 0.5 in dGB’s software).

Note, that the widths in RBF functions are specified independently from each input
dimension, making the functions elliptic rather than spherical. Note as well, that
unlike the activation functions for MLPs no bias is included in the RBF functions.



dGB-GDI Concepts & Theory 22

-3 -2 -1 0 1 2 3

-1

1

a) Gaussian
A(R)

R

-3 -2 -1 0 1 2 3
-1

1

b) IMQE
A(R)

R

2

                                                                
Fig. 3.5 Activation functions supported in dGB’s software for RBF

networks. The Gaussian function has a µ of 0 and a σ of 1.
The IMQE function has a µ of 0, a σ  of 1 and a k of 0.5.

Centre locations are typically determined by randomly selecting training examples
from a large set of training data. The smoothing parameters and the number of nodes
are typically adjusted empirically during training. RBF neural networks and MLPs
have been compared by many workers. Kavli (1992) reported consistently better
performance of RBF networks in five independent experiments. Another important
aspect when comparing RBF networks and MLPs is the training speed. RBF
networks can be trained within a fraction of the time that is required for training
MLPs. RBF networks, however, generally require more nodes to obtain similar
performances.

One of the training algorithms in dGB’s software for RBFs is the so-called HSOL
algorithm (Lee and Kill, 1989, Carlin, 1992). HSOL uses standard back propagation
for updating the function parameters, but this learning algorithm also dynamically
allocates new nodes in the hidden layer during training.
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3.4 Unsupervised Vector Quantiser networks
In the preceding section Multi-Layer Perceptrons and Radial Basis Functions neural
networks were introduced. These types of network belongs to the category of
supervised learning approaches. Datasets with known input and target vectors are
used to train and test these networks. In this section a type of network is introduced
that belongs to the category of unsupervised, or competitive learning: the
Unsupervised Vector Quantiser. The general aim of competitive learning is to find
structure in the data themselves and thereby extracting the relevant properties or
features. In the case of the UVQ the aim is to segment (cluster, classify) the data.
Similar input vectors must be classified in the same category. The classes are found
by the network itself from the correlations of the input data. Therefore, these
networks are sometimes referred to as self-organising networks.
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Vector Quantiser Post-processing

                                                                
Fig. 3.6 Schematic representation of the Unsupervised Vector

Quantiser, as used in this study. The network consists of a
vector quantiser part and a post-processing part. Two outputs
are generated: the index of the winning hidden node (i.e. the
class) and a degree of match, which indicates how close the
input vector is located near the centre of the class.

The UVQ that will be used is a modified version of a Learning Vector Quantiser
(LVQ). Vector quantisation is an important application of competitive learning for
data encoding and compression (Hertz et.  al., 1991, and Haykin 1994). In vector
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quantisation an input vector is replaced by the index of the winning output unit.
Vector quantisation requires a set of classes, or codebook to exist. Normally, a set of
prototype vectors is used. The class is found by calculating the Euclidean distance to
the prototype vectors. The nearest prototype vector is the winner. LVQ's are a
supervised version of vector quantisation. In this case the prototype vectors are
updated closer to the input, following a successful classification and further away
from it when the classification is unsuccessful.

The unsupervised vector quantiser (UVQ) is quite similar to the LVQ. The prototype
vectors are in the unsupervised case initialised as random vectors. The vector closest
to the input vector is updated in the direction of the input vector.

The UVQ in this study consists of a two-layer vector quantiser followed by a post-
processing output-layer (Fig. 3.6). In the vector quantiser part of the network, a
single layer of hidden nodes hi  with i = 1,..., K , where K  indicates the number of
classes, is fully connected with a set of input nodes y j  with j = 1,...,L  via

excitatory connections wi, j . For each hidden node the net output is computed as the

Euclidean distance to the input:

hi y( ) = (y j − wi, j )2

j =1

L

∑ i = 1,...,K . (3.10)

In the learning phase the net outputs of all hidden nodes (classes) are compared in the
post-processing layer. The hidden node with the smallest net output is designated the
winner.  The weighting vector wp,j  associated with the winning node p is then

updated according to:

wi, j
' =

wi , j i = 1, ...,p −1, p +1,...K j = 1, ...,L
wp , j + η y j − wp , j( ) j = 1, ...,L,

 
 
 

(3.11)

where:

η  is a empirically determined learning rate parameter and wi, j
'  is the updated

weighting matrix. This update rule is known as the standard competitive learning rule.
Updating is continued until no noticeable changes in the prototype vectors are
observed.

In the application phase, the output layer consists of two nodes: one giving the index



dGB-GDI Concepts & Theory 25

number of the winning node, and one giving a degree of match between the input
vector and the prototype vector of this node. The degree of match m  is computed
as:

m = 1 −
hp y( )
r L

 

 
  

 
 , (3.12)

where r  is the variation range for the training data.

In dGB’s software, the input variables are rescaled so that they all fall in the range
from -0.8 to 0.8 (therefore, r =1.6). The degree of match m  can thus vary from 0
(minimum match) to 1 (perfect match).

The implication of rescaling is that all input variables will contribute equally to the
classification result. In our application seismic signals are classified by feeding the
UVQ network amplitudes at discrete sample positions. The samples are selected
relative to a reference horizon. The rescaling procedure equalises the dynamic range
at each sample position. It must be realised that some situations may exist where this
approach does not yield an optimum result. For example, if, for the signals to be
classified, a maximum amplitude and a zero-crossing always occur at the same
sample positions, than the amplitude variations around the zero-crossing are relatively
amplified.

This concludes the introduction to the integration framework and the type of neural
networks that are available in dGB’s software.

3.5 Neural network references
Broomhead, D.S., and Lowe, D., 1988. Multivariable functional interpolation and

adaptive networks, Complex systems, 2:231-355, 1988.
Carlin, M., 1992. Radial Basis Function Networks and Nonlinear Data Modelling.

Proceedings of Neuro-Nimes'92, Neural Networks and their Application, EC2,
France, 1992, pp.623-633.

Doveton, J.H., 1994. Geologic Log Analysis Using Computer Methods. AAPG
Computer Applications in Geology, No. 2. Association of American Petroleum
Geologists.

Fahlman, 1988. An Empirical Study of Learning Speed in BackPropagation Networks.
Technical Report CMU-CS-88-162, 1988. LeCun, Y., 1985. Une procedure
d'apprentissage pour réseau à seauil asymétrique (A learning procedure for
asymmetric threshold networks). Proceedings of Cognitiva 85, 599-604, Paris.



dGB-GDI Concepts & Theory 26

de Groot, P.F.M. and Bril, A.H., 1997. Quantitative interpretation generally needs no
seismic attributes, 59th. EAGE conference, Geneva, 26-30 May 1997.

de Groot, P.F.M., 1996. Neural Network Experiments on Synthetic Seismic Data.
Artificial Intelligence in the Petroleum Industry vol. 2 - Symbolic and
computational applications. Éditions Technip, ed. Braunschweig, B. and
Bremdal, B.A.

de Groot, P.F.M. and Bril, A.H., 1996. The Use of Pseudo-wells in Seismic
Interpretation Studies. 58th. EAGE conference, Amsterdam, 3-7 June 1996.

de Groot, P.F.M, 1995. Seismic reservoir characterisation employing factual and
simulated wells. PhD thesis, Delft University Press.

de Groot P.F.M. and Campbell A.E., 1995. Seismic reservoir characterisation in ‘total
space’; a Middle Eastern example. OAPEC/John Brown workshop 12-15 Sep.
1995, Delft.

de Groot P.F.M., 1995. ‘Total Space Inversion’; Concept and Experiments. 57th.
EAEG conference, June 1995, Glasgow.

de Groot, P.F.M. et.al., 1993. Seismic Reservoir characterisation using artificial neural
networks and stochastic modelling techniques. 55th EAGE conference, June
1993, Stavanger.

Haykin, S.,  1994. Neural Networks, A Comprehensive Foundation. Macmillan College
Publishing Company, New York.

Hertz, J., Krogh, A. and Palmer, R.G., 1991. Introduction to the theory of neural
computation, Lecture notes volume I. Santa Fe intsitute studies in the sciences
of complexity, Addison-Wesley Publ. Comp.

Kavli, T.Ø., 1992. Learning Priciples in Dynamic Control. PhD.Thesis University of
Oslo, ISBN no. 82-411-0394-8.

LeCun, Y., 1985. Une procedure d'apprentissage pour réseau à seauil asymétrique (A
learning procedure for asymmetric threshold networks). Proceedings of
Cognitiva 85, 599-604, Paris.

Lee, S. and Kil, R.M., 1988. Multilayer feedforward potential function network.  IEEE
International Conference on Neural Networks, I-161 - I-171, San Diego, 1988.

Lee, S. and Kil, R.M.,  1989. Bidirectional Continuous Associator Based On Gaussian
Potential Function Network. International Joint Conference on Neural Networks,
vol.1, 1989, pp.45-53.

Lippmann R.P., 1989. Pattern Classification Using Neural Networks. IEEE
Communications Magazine, November 1989.

McCulloch, W.S. and Pitts, W., 1943, A logical calculus of idea's immanent in
nervous activity. Bulletin of Mathematical Biophysics 5, page 115-133. Reprinted
in Anderson, J.A. and Rosenfield, E., 1988. Neurocomputing: Foundations of
Research, Cambridge MIT Press.

Minsky, M. and Papert, S., 1969. Perceptrons: An Introduction to Computational
Geometry. MIT Press, Cambridge, MA.

Moody, J., and Darken, C.J., 1988. Learning with localized receptive fields, in
Proceedings of the 1988 Connectionist Models Summer School.  pp. 133-143,
editors: Touretzky et.al., Morgan-Kaufman.



dGB-GDI Concepts & Theory 27

Parker, D.B., 1985. Learning-Logic, Tech.Rep.TR-47. MIT Center for Computational
Research in Economic and Management Science, Cambridge, MA. Rosenblatt,
F., 1962. Principles of NeurodyWintershallics: Perceptrons and the Theory of
Brain Mechanisms. Washington D.C., Spartan Books.

Platt, J., 1991. A resource-allocating network for function interpolation. Neural
Computation, 3(2):213-225, 1991.

Poggio, T. and Girosi, F., 1989. A theory of networks for approximation and learning.
Technical report, Artificial Intelligence Laboratory, Massachusets Institute of
Technology, Jul. 1989.

Powel, M.J.D., 1987. Radial basis functions for multivariable interpolation: A review,
in Algorithms for Approximation. editors: Mason, J.C., and Cox, M.G.,
Clarendon Press, London.

Rich, E. and Knight, K., 1991. Artificial Intelligence second edition. McGraw-Hill, Inc.
Rosenblatt, F., 1962. Principles of NeurodyWintershallics: Perceptrons and the Theory

of Brain Mechanisms. Washington D.C., Spartan Books.
Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986. Learning internal

representations by error propagation, Parallel Distributed Processing. Editors:
Rumelhart, D.E., McClelland, J.L. and the PDP Research group, 318-362,
Cambridge, MA, MIT Press.

Schmidt, W.F., 1994, Neural Pattern Classifying Systems. PhD. thesis, TU Delft,
CIP-DATA Koninklijke Bibliotheek, Den Haag, ISBN 90-9006716-7.

Schultz et.al.,1994. Seismic-guided estimation of log properties, Part 1:  A data-driven
interpretation methodology. The Leading Edge, May 1994; Part 2: Using artificial
neural networks for nonlinear attribute calibration. The Leading Edge, June
1994; Part 3: A controlled study. The Leading Edge, July 1994.

Sinvhal A. and Sinvhal H., 1992. Seismic Modelling and Pattern Recognition in Oil
Exploration. Kluwer Academic Publishers.

Turing A.M., 1937. On computable numbers, with an application to the
Entscheidungsproblem. Proc. Lond. Math. Soc. (ser. 2), 42, 230-65; a
correction 43, 544-6.

Werbos, P.J., 1974. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA.



dGB-GDI Concepts & Theory 28

4 Monte Carlo statistics

4.1 Simulating correlated multi-variate stochastic
variables

The following mathematical description is used in a simulation algorithm aimed at
simulating wells, i.e. 1D-stratigraphic profiles with attached physical properties. In
the algorithm, wells are constructed from so-called integration framework units (or
entities). These entities are grouped at different scale levels. It is considered important
that geological knowledge controls the selection of framework entities and that
unrealistic realisations of variables can be redrawn. This implies that wells must be
constructed one-by-one, entity-by-entity and variable-by-variable.

Variables in a computer are simulated using a (pseudo-) random number generator.
When random variables are correlated, it is not simple, however, to simulate random
draws using such a (pseudo-) random number generator.  This is especially In the
following discussion X  is a  stochastic vector. In our algorithm, X  comprises all
stochastic variables required for the simulation. A component of X  is denoted by
Xi . Examples of components are sonic , density, thickness and user-defined variables
attached to framework entities. Each component Xi  is assumed to be normally

distributed with expectation µ i  and variance σi
2

, symbolically written as:

X i ~ N (µi ,σi
2 ) . The vector of expectation will be denoted µ . The components

are assumed to be correlated. The covariance between components i  and j  is
indicated by σij . Note, that the covariance between component i  and itself, σii

equals σi
2 . The matrix of covariances will be denoted as Σ . When the covariance

σij  is normalised with the standard deviations σi  and σ j , we obtain the correlation

coefficient ρ ij , symbolically written as: ρij =
σij

σi *σ j( ). The matrix of

correlation coefficients will be denoted by C . Sets of components can be grouped
into subvectors of X  denoted by X (i), An example of a subvector X (i) is that part
of stochastic vector X  comprising correlated thicknesses of a set of layers. The
theorems given hereafter apply to the general case of drawing entire subvectors.
However, for design reasons, the variables are, drawn one-by-one, in the final
implementation of the algorithm. In other words the subvector X (i) to be drawn has
only one component. This is illustrated by the example at the end of this Chapter.
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We require two theorems for our algorithm to work. Theorem 4.1 is used for
updating the expectation and covariance matrix of a variable to be drawn, given some
already drawn correlated variables (Mardia, 1979). This theorem requires the
covariance matrix to be specified completely. In general, the user will not be in a
position to specify all coefficients. Therefore, the unspecified correlation coefficients
must be approximated first. This is accomplished with Theorem 4.2 (Meeuwissen
et.al., 1994).

In the following discussion, first the two theorems are given, followed by an
illustration of their use with an example.

Theorem 4.1

First we introduce some notation. Let X  be a n-dimensional stochastic vector which
is partitioned as follows: true when the variables must be drawn one-by-one, as in our
application. The realisations of already drawn variables will in that case influence the
realisation of the variable to be drawn. For example, let us assume that a positive
correlation exist between the thicknesses of two layers. When for the first layer a
small thickness is drawn, then also for the second layer a small thickness must be
drawn.  In the case of normally distributed random variables, it is possible to draw
the variables consecutively from the marginal distributions. Each time a variable is to
be drawn, its marginal distribution must first be updated for the already drawn
variables to which it is correlated.

X =
X (1)

X(2)

 

 
 

 

 
 , (4.1)

with expectation Ε[X]  equal to µ :

µ = Ε[ X] =
µ(1)

µ (2)

 

 
 

 

 
 , (4.2)

and a positive definite covariance matrix  Cov( X)  given by:
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Σ = Cov( X) =
Σ11 Σ12
Σ21 Σ22

 
 
 

 
 
 . (4.3)

Suppose X  is multivariate normally distributed with expectation µ  and covariance

matrix Σ , which can be symbolically written as:

X ~ MVN µ,Σ( ). (4.4)

Here ~  denotes 'is distributed as' and MVN  indicates multivariate normally
distributed. Then the conditional distribution of X (1) given a realisation x(2) of

X (2) is multivariate normally distributed with expectation:

ˆ µ (1) = µ(1) + Σ12 Σ22
−1( x(2) − µ(2) ) , (4.5)

where ˆ µ (1)  is the updated expectation. The updated covariance matrix ˆ Σ 11 is

given by:

ˆ Σ 11 = Σ11 − Σ12Σ22
−1Σ 21. (4.6)

Theorem 4.2

Suppose X1, X2  and X3  are correlated random variables which satisfy:

E[X1 X2 = x2 ] is linear in x2, (4.7)

and

E[X1 X3 = x3 ] is linear in x3 . (4.8)

Then, given the correlation  coefficients ρ12  between the pairs X1 and X2   and
ρ13 between X1 and X3 , the correlation coefficient  ρ23 is given by:
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ρ23 = ρ12ρ13 . (4.9)

The conditions in the theorem imply, say for X1, X2 , that given a realisation x2 of
variable X2 , the expectation of X1 shifts linearly towards x2. For normal
distributions this is always satisfied, as can be seen from theorem 4.1, equation (4.5).

Although this theorem applies to three variables with one missing correlation
coefficient only, we are going to use it also, without strict theoretical justification, for
more than three variables where several correlation coefficients may be missing. We
must note here, that, for more then three correlated variables, the positive definiteness
of the covariance matrix may be violated by this procedure. In practice we have seen
this happen only in some rare cases.

We will illustrate the use of these theorems with the following example. Suppose the
correlation matrix has been specified for five variables as follows:

C =

1 0 0 0 0
0 1 * 0.8 *
0 * 1 * 0.6
0 0.8 * 1 0.4
0 * 0.6 0.4 1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

. (4.10)

In this particular example, ρ24  , ρ35  and ρ45  are known coefficients and ρ34 ,
ρ25  and ρ23  are unknown, which is indicated in the matrix by the * symbol. Using
4.9 we can determine two of the unspecified correlation coefficients.

ρ34 = ρ35ρ54 = 0. 24, (4.11)

and

ρ25 = ρ24ρ45 = 0 .32. (4.12)

However, ρ23 cannot be determined by combination of two of the given correlation
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coefficients. In a second step, we can approximate it using the previously determined
correlation coefficients:

ρ23 = ρ24 ρ43 , (4.13)

which can be expanded using 4.11 to:

ρ23 = ρ24 ρ35ρ54 = 0 .192 . (4.14)

Note, that we could also have used:

ρ23 = ρ25ρ53 = ρ24 ρ45ρ53 . (4.15)

In this particular case, the same value for ρ23 will be obtained for (4.14) and (4.15).
In general, however the approximation is not unique. If several combinations are
possible, in which the number of initially specified correlation coefficients differs,
then a selection is made from the combinations with the least number of initial
coefficients. From these we, arbitrarily choose one of the possible combinations.
Thus, if in a different example, ρ23, ρ34, ρ35, ρ45 would have been specified,
then we can obtain ρ25, either from:

ρ25 = ρ23ρ35, (4.16)

or, from:

ρ25 = ρ23ρ34ρ45 . (4.17)

The former expression is favoured because it contains less specified correlation
coefficients.

With respect to the approximate nature of the procedure, we emphasise that after
multiplying correlation coefficients, the resulting number comes closer and closer to
zero. Therefore, the effect of the resulting approximation of the correlation
coefficient decreases rapidly. Hence, we argue that making an error in the
approximation has little effect when many terms are involved.

After application of the above procedure, the correlation matrix of (4.10) can be
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approximated by:

˜ C =

1 0 0 0 0
0 1 0.192 0.8 0.32
0 0.192 1 0.24 0.6
0 0.8 0.24 1 0.4
0 0.32 0.6 0.4 1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

. (4.18)

We can now draw samples for all variables. Suppose we would like to draw them in
the order X3 , X5 , X1, X2 , X4 . When selecting X3 , no other has been drawn, so
we can just draw it from its marginal probability density function
X3 ~ N (µ3,σ3

2 ) . Now X5  must be drawn, conditioned on the x3  value. Using

theorem 4.1, we find:

ˆ µ 5 = µ5 + σ35 (σ3
2 )−1(x3 − µ3 ) , (4.19)

and

ˆ σ 5
2 = σ5

2 − σ35 (σ3
2 )−1σ53 , (4.20)

where

σ35 = ρ35σ3σ5 , (4.21)

is the covariance between X3  and X5 . Now X5  can be drawn from N ( ˆ µ 5 , ˆ σ 5
2 ) .

Now X1 is to be drawn. Since it is independent of X2 , X3 , X4  and X5  it can be

drawn from its marginal distribution N (µ1,σ1
2 ). Finally, for X2  and X4  we use:

ˆ µ 2 = µ 2 + σ23σ25[ ] σ
3
2 σ35

σ35 σ
5
2

 

 
 
 

 

 
 
 

−1
x3 − µ3
x5 − µ5

 
  

 
  , (4.22)
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ˆ σ 2
2 = σ2

2 − σ23σ25[ ] σ
3
2 σ35

σ35 σ
5
2

 

 
 
 

 

 
 
 

−1
σ23
σ 25

 
  

 
  , (4.23)

and

ˆ µ 4 = µ4 + σ24 σ34 σ54[ ]
σ2

2 σ23 σ25

σ23 σ3
2 σ35

σ25 σ35 σ5
2

 

 

 
 
 

 

 

 
 
 

−1

x2 − µ2

x3 − µ3

x5 − µ5

 

 

 
 
 

 

 

 
 
 

, (4.24)

ˆ σ 4
2 = σ4

2 − σ24 σ34σ54[ ]
σ2

2 σ23 σ25

σ23 σ3
2 σ35

σ25 σ35 σ5
2

 

 

 
 
 

 

 

 
 
 

−1
σ24
σ34
σ54

 

 

 
 
 

 

 

 
 
 

,  (4.25)

respectively.

This allows us to draw the variables one by one in any order. Also, we can redraw
any one of the variables when needed, and condition on the latest drawn value for
each of the correlated variables.
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5 Fluid replacement

5.1 Basic equations

The velocity and density of a porous medium are influenced by the fluids that are
present in the pore space. The bulk density ρ  as a function of porosity φ  is
formulated in the following equation:

ρ = (1− φ )ρs + φρ f , (5.1)

where:
ρs   denotes the density of the solid fraction and  ρ f  the density of the pore fluid.

The relationship between velocity, porosity and fluid content is more complicated.
Willie's time average equation, or (empirical) extensions to this formula have been
used by many workers (e.g. de Haas, 1992). Willie's equation (Wyllie et.al., 1958) is
formulated as:

t = (1− φ )ts + φt f  , (5.2)

where t  denotes sonic travel time of the rock,  ts  the travel time in the solid matrix
(i.e. empty porous rock), t f  travel time for the pore fluid and φ  is the porosity.

This equation and the empirical extensions thereof, are not very reliable when used as
fluid replacement algorithms, especially not for the gas-fill replacements.

The most widely used rock-physics models for studying wave propagation effects in
porous media are the theoretical Gassman and Biot-Gassmann equations (see, e.g.
Crans and Berkhout). The main difference between the two models is that Gassmann
is applicable to low seismic frequencies only while Biot-Gassmann is also used for
predicting frequency dependent velocities. The low frequency limit of Biot-Gassmann
equals the Gassmann’s equation which is formulated as:
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c p =
κ s
ρ

3
1− σb
1+ σb

 

 
 

 

 
 β +

1− β( )2

1 −β + φ κs κ f −1( )
 

 
 
 

 

 
 
 , (5.3)

where:
 c p denotes the seismic velocity for compressional waves. For an explanation of the

other symbols see Table 5.1.

Table 5.1 Rock and pore parameter definitions.

Parameter Description Unit

κ s compressibility modulus solid N/m2

κ f compressibility modulus fluid N/m2

σb Poisson ratio -

φ Porosity -

ρs density solid kg/m3

ρ f density fluid kg/m3

ρ density bulk kg/m3

c p P-wave velocity m/s

Direct application of this equation to calculate rock velocities is of limited use since
the Poisson ratio σ b  and the compressibility moduli κ f  , κ s  are, in general
unknown. If, however, the velocity of a rock with a given saturation is known, then
the Gassmann equation can be used to calculate the velocity of the same rock with a
different saturation, as follows.

Assume that κw , κhc , sw , shc , σb , ρs , ρw  and ρhc  are input parameters
specified by the user. For a description see Table 5.1; the index hc denotes
hydrocarbons. First calculate the porosity φ  using (5.1) for the brine-filled case.
Then calculate ρ f  using sw , shc , ρw  and ρhc . Now calculate the density of the

hydrocarbon-filled case using (5.1). Use Wood's law for the compressibility modulus
of the fluid mixture κ f . Wood's law is formulated as:
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 1 κ f = sw κw + shc κ hc . (5.4)

Now the Gassmann equation (5.3) can be employed to calculate the velocity of the
hydrocarbon-filled rock. The Gassmann equation, as a fluid replacement algorithm is
applied in two steps. In the first step, the frame strength, or Biot coefficient β
defined as κm κs   where κm  is the compressibility modulus of the matrix, is
derived from the sound velocity of the brine-filled rock.  Defining γ  as:

γ = 3(1− σb ) (1+ σb )  , (5.5)

and B  as:

B = φ (κs κ f −1)  , (5.6)

then β can be calculated as:

 β =1 − A ± (A + B)2 − (B2 (1 − γ )) , (5.7)

with:

A = ((ρcp
2 κ

s
) + γ (B − 1)) 2 1 − γ( ). (5.8)

In the second step of the fluid replacement algorithm the assumption is made that φ ,
β and σb  are independent from the fluid properties. Substitution of these variables
together with the properties of the fluid mixture in (5.3), yields the velocity of the
hydrocarbon filled rock. The sonic travel time follows as the reciprocal of this
velocity.

As stated above, the Gassmann equation assumes the velocity to be independent from
frequency. Biot (1956b) has proved, however, that velocity does depend on
frequency. At low (seismic) frequencies this effect can in general be ignored.
Anderson (1984) proved that this effect can be significant in special cases, e.g. low
permeability rocks with low saturation gas in the pores.
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6 Generalised Markov Chain Analysis

6.1 Markov chains
In many geological settings facies or sub-facies are genetically related to each other.
This relationship is expressed as a certain degree of vertical ordering in parts of a
stratigraphic sequence, and various stacking patterns may occur. Deposits can thus
be thought of as laid down under the control of a Markovian process, a process
where succeeding events in a sequence, in a probabilistic sense, are partially
dependant on one or more immediately preceding events. The extent of the
dependency in terms of preceding events is called the property or the order m of the
Markov process.

Significant depositional stacking patterns in stratigraphic sequences can be detected
and characterised with a Markov Chain Analysis (MCA). The sequence is classified
according to a chosen level of stratigraphic detail. The level of stratigraphic detail
gives a number of mutually exclusive stratigraphic states which then are indexed. For
a given order m, n mutually exclusive states can be combined into nm patterns. A
certain order is assumed and the number of times that transition occurs from a
possible pattern to a given state is tabulated in a transition frequency matrix. Based on
this, a χ2-test is performed where a null-hypothesis of random deposition is tested
against a hypothesis of depositional dependency with the assumed order. The analysis
yields a probability structure for how occurrence of a stratigraphic unit is related to
preceding units. If any significant stacking relation between units in a sequence are
found, this information can be used for interpretation of the depositional environment
as well as for simulation of stratigraphic sequences.

Traditionally the occurrences have been tabulated in such a way that the lower state
of a pattern indicated the row in the matrix and the state to which transition occurred
indicated the column. Thus, for higher order (m>1), information on the intermediate
states is lost in the analysis, and the resulting probability structure will not properly
reflect the significant patterns and may even be skewed. Interpretation and simulation
will be equally affected. To avoid this, the full pattern is used in the dGB-GDI
approach which we call Extended Markov Chain Analysis (EMCA).

Furthermore in traditional MCA, transitions are recorded either, at fixed thickness
intervals or, when there is a distinct state change. In dGB-GDI a deliberate choice has
been made to do the analysis solely on unit ID and not involve properties like
thickness. Our reasoning is that the sampling interval highly influences the probability
structure and the test result. Thick units may be oversampled and/or thin units
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neglected, both effects skew a statistical test. This approach actually only works well
if all units have similar thickness distribution.

6.2 Extended Markov Chain Analysis
In dGB-GDI the stratigraphic states corresponds to the framework units. EMCA can
be performed at any parent level in the framework. The children present at this level
supplies the base of mutually exclusive states at this level.

Two types of analysis are supported:

1. Immediate repetition of a state allowed. Thus in packages of e.g. sands which are
characterised as being of the same state type, transitions between layers in the
package are used in the analysis and included in the probability structure of the
state transition. This is similar to sampling with a thickness sampling interval in
standard MCA, but without the thickness element.

2. Immediate repetition of a state not allowed. Only transitions between different
states are counted. If a e.g. a sand package is present, it will be counted as one
distinct occurrence of a sand layer.  This is called Embedded EMCA.

If immediate repetition is allowed but only few packages are found, this can influence
the analysis. To avoid this, it is possible to re-do the analysis with the option to count
the packages as one layer only.

Assuming a certain dependency between points in the sampled sequence, the
assumed order m (length of patterns) gives a number of possible combinations of the
n states. The occurrence of transition from a given pattern to a given state is
tabulated in a transition frequency matrix which is a (nm,n) matrix. Considering the
full pattern, all the transition information is used and the matrix representation is a
tensor representation of the available information : from the Grand Total (total
number of transitions), which corresponds to no spatial information, to the m-th
order transitions, which corresponds to information of m-th order spatial
dependency.

The null-hypothesis matrix (the zero-order matrix) for a given assumed order is
constructed assuming that the individual state transitions in a pattern and from a
pattern are independent. This gives a basis for what information can be used to
construct ‘expected’ random transition frequencies. The only available ‘random’
transition information between states is the total amount of transitions from any
pattern to a given state and the Grand Total. These quantities are used to compute the
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unconditional probabilities for state transitions in a pattern and from a pattern to a
given state. The product of these probabilities is an expression of the proportion of
pattern-to-given-state transitions of the Grand Total that could be expected to occur
in case of  random transition. The ‘expected’ amount of occurrences is then simply
this probability multiplied by the Grand Total. For Embedded EMCA, transition
frequency for patterns involving self-transitions are set to zero and the allowed
transition frequency patterns are normalised to the sum of the actual observed
transitions to a given state.

A problem with the traditional χ2-test is the strong dependency on the amount of
actual transition observations and that the ‘expected’ random transition frequencies,
as opposed to the observed transition frequencies, most often are not integer values.
This introduces an unrealistic and uncontrolled error in the χ2-test. The error
diminishes with increasing number of observations, but it highly affects the chi
contribution if e.g. an observation of 1 is tested against an ‘expected’ value of 0.1.
Since the observed transition frequencies decrease rapidly for higher orders, these
limitations would highly affect an EMCA. To counter this, we have introduced a
correction to the traditional χ2-test, a correction based on how the error is expected
to influence the test.

6.3 Stationarity
Sedimentation can change in space and time, which may lead to space and time
dependent transition count distributions. Non-stationary vertical or lateral effects on a
MCA can be removed by splitting a sequence or a set of sequences into segments or
subsets that are stationary. The χ2-test can be used for vertical as well as lateral
stationarity tests. Transition frequencies from a full sequence (vertical) or a full set of
sequences (lateral) are tested against transition frequencies from a segment (vertical)
or one sequence (lateral) which have been normalised to create ‘expected’ transition
frequencies that are commensurable with the observed transition frequencies in the
full sequence or sequence set.
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7 Model Probability Module

7.1 Concept
One of the keys to successful use of dGB-GDI is the presence of dGB-GDI wells
(i.e. 1-D geological models) with a corresponding (tied) seismic trace. If anywhere
else in the area the geology is exactly the same, we should find the same seismic
trace there, that is if processing has been successful.
Unfortunately, it does not work the other way round: identical seismic traces can be
generated by completely different geology. Still, the amount of resemblance with a
trace that has a known geology attached to it is valuable information that we want to
use in our inversions.
Suppose we have two wells in the area. Let us assume well 1 has 10% porosity, and
well 2 has 15% porosity. First, we correlate the two well traces with all other traces
of the survey, so creating two correlation maps. At the well positions, we find that
the other well trace correlates 0.5, whereas the well trace itself will of course have a
correlation of 1. Let us consider a new position exactly between the two wells.
Consider the following possibilities:

1] Correlations are 0.9 and 0.6
2] Correlations are 0.6 and 0.6
3] Correlations are 0.9 and 0.9
4] Correlations are 0.6 and 0.9

Possibility 1] suggests a lower porosity than 2] and 3], which are all expected to be
lower than 4].

The most important conclusions we can already make after this “evaluation” are:

• These exercises do uncover information on the subsurface
• We can not determine 'absolute' probabilities

Now consider a situation where we have a number of models which are known to be
representative for the whole area. That is, the wells describe all possible geologies for
the area and the occurrences reflect the abundances of the various components and
quantitative properties. This property of the set of models is essential to take a next
step in our analyses.
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Each of the models will deliver a correlation of its seismic trace with all other traces
in the seismic data cube. Consider the set of correlations at a selected position in the
survey. The numbers represent the correlation of the actual seismic trace at this
position with each of the model traces.

Imagine that all models whose traces have a high correlation also have a high
porosity. Because the models are representative for the area, we expect the porosity
at the position to be high. Exactly how high, and with which certainty is still a matter
of discussion.

7.2 Scoring models
The central issue in the above procedures is the ranking of models at a certain
position. From different sources of information we can put constraints upon the
probability of finding a certain model at a certain position. Next to seismic correlation
we have geostatistics as a constraint. Geostatistical information gives us another way
to create a ranking in the probability of each of the models at a certain position. But it
also gives more. Near a control point (existing well) we have less freedom in
choosing a model than far away from any control point. This is expressed in the
standard deviation which is determined during geostatistical analysis.

All possible constraints on the ranking of the different models must be unified to be
able to get an integrated view on the subsurface parameters. Therefore, we have
defined new concepts, 'Score' and 'Score significance'.

A measure of probability is called a Score, when the following conditions are met:

1. the maximum score corresponds to probability 1.
2. the minimum score corresponds to probability 0.

Score is a monotonous increasing function of Probability. In other words when (SN,
PN) denotes a (score, corresponding probability) pair then for any (S1,  P1) and (S2,
P2):

1. if S1= S2 then P1= P2.
2. if S1> S2 then P1> P2

The prime importance of defining the concept is that we are allowed to not know the
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exact function Score -> Probability. This serves to incorporate seismic correlation,
but probably also geostatistics, which may not be so exact as some people would like
it to be.

Score significance is a value between 0 and 1 used to describe the importance of a
certain Score. A Score significance of 0 means that no conclusions can be drawn
from the Score at all, a value of 1 means that the score fully constrains the value. If
the Score significance is 1, the score can only be the maximum score, or the
minimum. For example, at a well position the score significance is 1: a model either
exactly matches the actual model (score=max) or it is rejected (score=min). For
scores originating from geostatistics, the significance will be defined as:

 1 −σ /σ max

Which is consistent with the fact that σ =0 (only possible with variogram models
with zero nugget effect) will result in a Score significance of 1. Outside the range of
some variogram models the significance can become 0.

In dGB-GDI, scoring is done on basis of Feature values. As an example, let us follow
the scoring of a Feature (e.g. 'Average Density [ato.low.vine]').

The first step is to extract this Feature from the real wells. With these Feature values,
geostatistical analysis can be done which results in (expectation,standard deviation)
pairs at each position in the survey. Then, the same Feature is extracted from a
simulated well group. Each of the pseusdo-wells or 1-D models will so generate a
value which can be compared at each position with the (expectation,standard
deviation) at that position. This will result, at each position, in a Score for each model
and a Score significance (because the significance is determined by the geostatistics
only, the significance is the same for all models). The above process is called Score
creation.

We could investigate these scores by themselves, but in many cases we will want to
combine all the constraints on the models into a 'Final Score'. In this process the
score and their significances are used to create a final score. An additional step would
be to combine the geostatistical score also with a seismic score and correlation.

As a last step, we can use any score (geostatistical, sesimic but most likely a Final
Score) to estimate the most probable value of a Feature at any position. If we extract
a Feature for each model in the set of models, we can so create an expectation and a
standard deviation for the Feature at each position. The values will be weighted on the
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score of the model at that position to get the expectation. The standard deviation is
also weighted and therefore reflects mainly the spread in the values of the highest
scoring models.

Each of the above results is useful in its own right. All steps should be carefully
checked. For example, if some of the models score very low everywhere, they may
be the result of an incorrect simulation of wells. Or if there is no prevalent value for
the high scoring models, there may be no information in any of the constraints for
this Feature.

7.3 Scoring geostatistical data
At a certain position, we have for a certain Feature, a pair (Expectation,Standard
deviation). Each model will get a score depending on the model's value for this
Feature: v. If standard deviation s is non-zero the score of value v on (e,s) will be
defined using the normalized deviation:

dn= | (e-v) / s |

The dn cannot be used as Score for two reasons:

1. A higher sigma_n means a lower probability
2. dn does not have a fixed maximum

There is an infinite number of transformations that will transform dn into a Score. We
have selected functions that are parameterizable with only one parameter. This
parameter is the Half-score-distance (hsd), i.e. the value of the dn for which the score
is 0.5 . Currently supported are:

• Linear:

Score = 1 - 0.5 * dn / hsd  (dn < 2 * hsd)
Score = 0 (dn >= 2 * hsd)

• Quadratic:

Score = 1 - (0.5 * dn * dn / hsd * hsd) (dn < sqrt(2) * hsd))
Score = 0  (dn >= sqrt(2) * hsd))

• Exponential:

Score = exp( -ln2 * dn / hsd )
• Gaussian:
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Score = exp( -ln2 * dn * dn / (hsd * hsd) )
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Figure 7.1: Scoring functions for ‘Half score relative deviation’ equal to 0.3.
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8 GDI-PRESTACK

8.1 General

GDI-PRESTACK generates prestack gathers, stacked responses and AVO attributes.
The package is used in combination with GDI's pseudo-well simulator for:

• unsupervised AVO inversion: matching AVO models to the seismic character using a
UVQ neural network;

• supervised AVO inversion: inversion of offset stack data to rock properties using a 
MLP or RBF neural network trained on modelled data; and

• AVO scenario modelling: modelling the AVO response of simulated wells (generated
in the GDI well simulation module).

Fig. 8.1 is a generalised workflow showing the required input, processing and
generated output.

8.2 Forward modelling
Synthetic seismograms are generated according to wave propagation through a
horizontally layered elastic isotropic earth model.  The resulting CMP gather contains:

• P-wave reflections;
• no conversions to S-waves;
• no multiples; and
• no interface waves e.g. head waves or ground roll.

The algorithm is based on the equations of Zoeppritz (e.g. Aki & Richards, 1980).
There are no restrictions to angles below the critical angle. Transmission effects are
calculated for each interface separately rather than according to just the ray
parameter for the lowermost reflector, as is the case in some other commercial
applications.

Ray tracing is used to calculate the travel-times and incidence angles of reflected
phases. Plane wave theory is used to calculate the amplitude and phase of these
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arrivals. The algorithm does not properly calculate the spreading behaviour away
from a source point, which is accounted for by ray-based methods such as Gaussian
beams, WKBJ and Maslov theory (Aki & Richards 1980).

The ray parameter (horizontal slowness) for a desired offset is determined by
shooting rays so that the difference between the desired and calculated offsets is
treated as a root (set equal to zero). The numerical method chosen to achieve this is
the Van Wijngaarden-Dekker-Brent method taken from Numerical Recipes (Press et
al 1992).

A discrete time series with a unit spike at the reflection arrival time does not retain the
precision of the ray-traced time: the temporal position of the spike is truncated to the
nearest sample point.  The problem is compounded when there is tuning (the delay
time between arrivals from adjacent reflectors is less than the dominant period).  In
order to avoid this problem, the equivalent unit spike signal is constructed directly in
the frequency domain. The amplitude spectrum has a constant unit amplitude.  The
phase spectrum is a straight line passing through the origin whose gradient is the
time-lag of the spike.  Therefore, the precision of the ray-traced time is completely
preserved.

In the frequency domain the impulse response (the frequency domain description of
the unit spike signal) is multiplied by the appropriate product of the plane-wave
(frequency-independent) reflection and transmission coefficients encountered on the
ray-path (Aki & Richards 1980):

• P-wave reflection coefficient at the reflector;
• product of P-wave transmission coefficients on the downward leg; and
• product of P-wave transmission coefficients on the upward leg.

The resulting spectrum is produced for each reflector, at a particular offset, and
summed.

In the next step the frequency domain representation of the source signal (i.e. the
wavelet) is multiplied with the spectrum.  The result is then transformed back into the
time domain using an inverse FFT to arrive at a CMP gather that needs to be NMO
corrected before stacking.

NMO correction is applied after convolution of the reflectivity series with the source
wavelet as this is what happens in reality.  In processing the NMO correction is
estimated from Dix equation, and is a first order approximation.  However, in GDI-
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PRESTACK the NMO correction is known precisely from ray-tracing. The NMO
correction is required not just at the reflection arrival times but at every sample point.
The time shifts are therefore interpolated to every sample point using a 4-point, 3d.
order La Grange polynomial interpolation algorithm. The NMO correction is applied at
every sample.  This results in a non-uniform sample interval as the NMO correction
changes with time (becoming larger with time if there are velocity increases with
depth).  The NMO corrected time series is therefore resampled to the original
sampling rate by the same 3d. order polynomial interpolation algorithm.

The NMO correction causes a distortion of the wavelet, which increases with offset
and depth.  Specifying a stretch mute percentage, which means that if the sample
interval is stretched more than a specified percentage the signal is muted out, can
control this stretching.

Where there is a velocity decrease with depth the travel-time for a shallow reflection
can exceed that for a deep reflection beyond a certain offset. This phenomenon is
called cross-over and causes a problem for applying NMO correction.  In GDI-
PRESTACK there is an option to prevent cross-over by always applying the smallest
NMO correction where events cross-over.  (An alternative approach would be to
mute the data beyond this offset.)

The software offers a plane-wave option, which means that the NMO correction is
applied before the reflectivity spectrum is multiplied with the source wavelet in the
frequency domain.  This means that there is no NMO stretch.  The plane wave
synthetic is completely unrealistic, however, it is instructive as any amplitude
variation with offset is entirely due to the behaviour of the reflection and transmission
coefficients with offset.

Source and receiver array effects can be included at source and receiver locations
separately, or at both locations simultaneously.  The calculation simply requires the
number of array elements the sensor spacing, and is performed in the frequency
domain.

An approximation to the effect of geometrical spreading may be applied to the
synthetic seismograms according to either 1/(r) or )/(1 2

int tV  (Sheriff & Geldart 1995).

The user may apply any number of linear mutes to the data.  Any number of stacks,
each being over a specified offset range, may be produced.  The stacked data are
normalized by the number of contributing samples.
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The AVO gradient and intercept attribute stacks may be calculated (Sheriff & Geldart
1995).  The incidence angle is required and may be used directly from the ray tracing
or calculated as it would be from real data by using the ratio of the RMS velocity to
the sample time and the local interval velocity.
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Figure 8.1: AVO flow diagram.


