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Introduction

Here, we describe two Machine Learning workflows to create pseudo-3D cubes from 2D
seismic grids. Pseudo-3D cubes are interesting because they enable the application of 3D
seismic interpretation workflows and 3D visualization techniques to 2D seismic datasets. This
work is a continuation of the Machine Learning seismic interpolation work reported by de
Groot and van Hout [2021]. Our model is a 3D U-Net, a Convolutional type of Neural Network
that is known as an auto-encoder [Ronneberger et.al., 2015]. It consists of a decoder part and
an encoder part. The encoder decomposes the input image sequentially into smaller-size
features. The decoder recombines the features sequentially into larger-size components until
the target image emerges.

Data and Methodology

The seismic dataset in our experiments is called Penobscot, a free data set from offshore Nova
Scotia that is downloadable from the TerraNubis cloud portal. Penobscot has both 2D and 3D
seismic data but the 2D grid is too course for our purposes. Instead, we emulate a 2D seismic
grid by blanking most of the 3D volume. We only pass a few in-lines and cross-lines while we
blank all traces in between. The input volume with blanked traces has a bin-size of 25 x 25 m
and a linespacing of 1250 x 1250 m. (Fig 1a).

To infill the missing data, we experiment with two different workflows: a direct approach and
an approach that requires flattening and unflattening. In both experiments, we extract examples
from a restricted training area. We apply the trained models to the entire survey. Areas not used
for training thus serve as blind test areas (Fig. 1a).

In the direct experiment, we extract 9,328 cubelets of 128x128x128 samples each from the
volume with blanked traces and from the corresponding original volume with complete data
(Fig. 1b). Each cubelet is overlapping 90% with its neighbors in the inline, crossline and Z
directions. Our 3D U-Net is a Keras model with an input shape of 128x128x128 samples that
we train for 20 epochs. We use ‘mse’ as loss function, ‘mae’ as metric and ‘Adam’ as optimizer.
The result is shown in Fig. 1c.

In the second experiment, we flatten both the input volume and the target volume before
extracting examples. The flattening (Wheeler transformation) is done with a model-driven
HorizonCube that we construct from 6 interpreted horizons. In the flattened domain the Z-axis
is an index from 0 to 886 representing Relative Geologic Time. We test 3D U-Nets with input
shapes 128x128x128 and 64x64x128 samples (Fig. 1a) that we train for 20 epochs on 11,440
examples. We use the same loss function, ‘metric and optimizer as before. The result after
unflattening of the 64x64x128 model is shown in Fig. 1d. The output of the smaller Unet is
smoother than the output of the larger model but the continuation of the main reflectors is
better. Both models introduce a bias in the output amplitudes that is removed with a simple
DC-removal scaling function.
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Figure 1 a) Input data has real seismic data on in-lines and cross-lines 1250 m apart and
zeros in between; training area is shown in green; example of one input cubelet of 64x64x128
samples from the flattening / unflattening experiment. b) Target data on blind test in-line 1520,
blind test cross-line 1570 and z-slice 2800 ms. c) Result of the direct experiment. d) Result of
the flattening / unflattening experiment.

Conclusions

We have shown that a 3D U-Net can be trained to create pseudo-3D volumes from sparse input
grids. Both interpolation results are encouraging. The direct result is a fast approach that does
not require any interpretation inputs. However, the interpolated reflection patterns are less
continuous than those obtained with the flattening / unflattening approach.

We expect the application of either trained model to a real 2D seismic dataset with similar grid
dimensions and similar seismic character to produce a useful pseudo-3D cube. This last step in
the workflow was not done because the available 2D seismic coverage in this project is too
sparse.
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