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Abstract 
This paper describes recent experiences with the estimation of confidence bounds for supervised 
neural networks using the method and theories developed by Yang et al. (2000). Estimation of 
confidence bounds is essential for neural network predictions to be successful. The method is 
applied to an inverted porosity volume that is predicted using a supervised neural network 
trained on 300 simulated pseudo-wells.  The reliability of the neural network prediction is 
estimated and confidence bounds are placed on the output of the supervised neural network. The 
method is considered a significant improvement in the application of neural network technology 
for the oil industry.  

Introduction 
Artificial Neural Networks are a class of non-linear models, which have been successfully 
applied in many areas for prediction, pattern recognition, classification and process control. They 
are commonly used in problems where the underlying physical models are either unknown or 
very complex. The predictive power and reliability were normally evaluated by comparison of 
the predicted values and the measured values at control points (i.e. wells in the oil industry). To 
estimate the reliability more accurate we suggest setting confidence bounds around the predicted 
values. A new method to estimate the confidence bounds was designed based on evaluation of 
earlier methods and experiments on simulated seismic data (Yang et al., 2000). The significance 
of this development is clearly illustrated by the results of the evaluated experiment. 

A new method to estimate confidence bounds 
Yang et al. (2000) compared the existing confidence bound estimation methods and investigated 
their behaviours when their assumptions are violated. A correction method was launched to 
estimate the confidence bounds more reliable. The existing methods are asymptotically valid 
when the number of training points goes to infinite. It is also assumed that the model errors are 
independent and normally distributed with zero means and the neural network is trained to 
convergence, and there is no observation error. In reality, these assumptions are rarely satisfied. 
To evaluate the performance of the confidence bound estimation methods, the coverage of the 
confidence interval was used as a quantitative measure of the size of the confidence interval. 
Here, the coverage is the percent of targets that falls within the confidence interval.  
The experimental results of Yang et al. (2000) showed that the estimated confidence intervals are 
not always correct. It was observed that the estimated confidence intervals were normally larger 
than the desired coverage when there was no observation error. Increasing the number of training 
points reduces the size of the estimated confidence intervals.  The existence of irrelevant inputs 
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and observation error reduces the coverage of the confidence intervals. In such cases, the 
variance of the estimated confidence intervals could be very large when the number of training 
points is small. Irrelevant inputs reduce the size of confidence intervals in extrapolation areas, 
especially when the number of the training points is small. In the presence of observation error, 
stopping training early increases the coverage of the confidence intervals. With a large number 
of training points, however, the confidence interval will normally reflect the distribution of the 
training data. The size of the estimated confidence intervals depends on various conditions such 
as the level of observation noise and the training process.  
Yang et al. (2000) developed a method to estimate the confidence bounds more reliable.  The 
method estimates the bias of the coverage and corrects the confidence bounds. The correction 
method is performed as follows: a neural network is trained using a training set and is 
subsequently applied to a test set. This procedure is repeated several times and the average 
coverage (1-α1) is computed. When the neural network is applied to the application set, the new 
confidence bounds are corrected by:  
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where c is the size of the confidence interval computed by the standard algorithm, function p(.) is 
the inverse of the normal cumulative distribution function, and (1-α0) is the desired coverage.  

Results 
The method is applied to a realistic multi-dimensional prediction case.  A supervised neural 
network was trained to predict the porosity from the combination of seismic waveform, acoustic 
impedance and the reference depth (fig. 1). The input training data is acquired from the synthetic 
traces of 300 simulated wells. The data is extracted within a moving window that slides along the 
well traces. These simulated pseudo-wells were created using a geologically constrained Monte 
Carlo simulation technique (de Groot et al. 1996). Six real wells, located within the 3D seismic 
survey, act as blind tests to avoid overfitting of the neural network while training. We used a 
Multi-Layer-Perceptron (MLP) neural network that has one hidden layer with five nodes (fig. 1, 
left).  
A first quality indication of the neural network is its training performance. The normalised root-
mean-square (RMS) and the scatter plot (predicted vs. actual porosity value) show the training 
history and the final result (fig. 1, center and right). Training was stopped when no further 
improvement was achieved. The trained neural network was applied to the six real wells to invert 
the seismic data to a predicted porosity. For each prediction the 90% confidence interval was 
calculated using a simple, commonly used algorithm proposed by Chryssolouris et al. (1996) 
(see also Yang et al. 2000). The RMS was calculated for the test set and the coverage of the 
confidence interval was computed. This procedure was repeated 50 times. 
The results of the 50 trials are displayed in figure 2. The RMS is around 0.1, except in a few 
cases where the neural network was badly initialized and the RMS was much larger. Although 
the number of samples in the test set is only 84 (14 datapoints per well) the coverage was stable, 
varying between 0.7 and 0.9. However, there is clearly a bias as the coverage is lower than the 
desired coverage of 0.9, which demonstrates that the simple equation to calculate the confidence 
intervals is not adequate. Therefore the correction equation from Yang et al. (2000) was applied 
to correct the size of the confidence interval. A correction factor of 1.3647 was computed and 
multiplied to the size of the confidence interval given by the standard method. The results for 
two wells are shown in figure 3. It shows the predicted values with the confidence interval before 
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and after the correction is applied. The size of the interval was increased to have a higher and 
more accurate average coverage.  
In the past the prediction result could only be validated by making a comparison between the 
predicted values and the measured porosity in the wells, i.e. based on the input data only. With 
the newly designed method we are now able to estimate the confidence bounds as well, not only 
for the training and test sets but also for the application set. The method developed by Yang et 
al. (2000) was used to estimate the confidence bounds in a reliable manner that is considered 
superior to standard algorithms used to date. 

Conclusions 
The estimation of confidence bounds has significantly improved the applicability of the 
prediction of (petrophysical) parameters by supervised neural networks. Besides a comparison 
between predicted and measured data a confidence interval can now be obtained for each 
predicted value.  This will reduce the uncertainties that are related to the evaluation of prospects 
and fields in the oil industry.  
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Fig. 1 Trained supervised MLP neural network topology (left), normalised RMS plot 
(center) and scatter plot of predicted values vs. actual values (right). 

Fig. 3 

Fig. 2 RMS values (top) and coverage (base) for 50 trials. 
 

Prediction results Well 1 and Well 2 with 90% confidence bounds using a 
standard algorithm (top, dashed lines) and using the corrected confidence 
interval using formula by Yang et al. (base, dashed lines). Predicted values 
(x), and measured values (o). 
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