An Evaluation of Confidence Bound Estimation Methods
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ABSTRACT: When artifical neural networks (ANN) are used in the prediction problems, it is usually desirable
that some form of confidence bound is placed on the predicted value. Methods to estimate the confidence
bound are available. However, these methods are valid under certain assumptions, which are rarely satisfied
in practice. The behavior of the estimated confidence bound are not well understood when the assumptions
are violated. We have designed some test functions to examine the behavior, and suggest how the estimated
confidence bound can be corrected. The suggested method is used in the prediction of rock porosity values from
seismic data for oil reservoir characterisation.
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INTRODUCTION

Artificial neural networks (ANN) are a class of non-linear models that have been successfully applied in many
areas such as prediction, pattern recognition, classification and process control (Hertz et. al. 1991, Haykin 1994).
The ANN models are inspired by brain architecture and are capable of learning from data. They are commonly
used in problems where the underlying physical models are unknown. Our application is to predict rock porosity
values from seismic data for oil reservoir characterisation. Compared to the output of other non-linear models,
the output of a neural network is more dependent on the initialisation and the learning process. To measure
the reliability of the neural network output is therefore very interesting. It is usually desirable that some form
of confidence bound is placed on the output of a neural network. For our porosity prediction application to be
successful in the oil industry, we need to estimate the confidence bounds. The problem of confidence bound
estimation has been studied recently for prediction problems. A few methods are now available and some
theories have been developed (Leonard et. al. 1992, Chryssolouris et. al. 1996, Shao et. al. 1997, Hwang and
Ding 1997, de Veaux et. al. 1998).

The existing confidence bound estimation methods are asymptotically valid when the number of training points
goes to infinite (Hwang and Ding 1997). It is assumed that the model errors are independent and normally
distributed with zero means, there is no observation error (Chryssolouris et. al. 1996), and the neural network is
trained to convergence (de Veaux et. al. 1998). In reality, these assumptions are rarely satisfied. The behaviours
of the estimated confidence bounds are not well understood when these assumptions are violated. Further more,
the existing confidence bound estimation methods have not been evaluated based on comparison. It is therefore
difficult to choose the right method for a particular ANN application.

We designed some test functions to evaluate the performance of the confidence bound estimation methods,
and to reveal the behaviours of the estimated confidence bounds in various situations. In addition to some
simple, one and two-dimensional test functions, we designed a 10-dimensional test function, which represents a
demanding, but still realistic prediction case. In this 10-dimensional function, some variables are correlated, and
some are irrelevant to the output. The coverage of the confidence interval was used as a quantitative measure
of the size of the confidence interval. Here, the coverage is the percent of targets that falls within the confidence
interval. Also, we examined whether the estimated confidence bound reflected the distribution of the training



data. It is assumed that the confidence interval should be large in the area where the training data are less
dense or the training data are extrapolated. Two types of neural networks were tested. They were networks
with sigmoid activation functions and networks with radial basis activation functions.

The experimental results showed that the estimated confidence intervals are not always correct. With a large
number of training points, however, the confidence interval will normally reflect the distribution of the training
data. The size of the estimated confidence intervals depends on various conditions such as the level of observation
noise and the training process, and sometimes needs to be corrected. We used porosity prediction case to show
how such correction can be done.

CONFIDENCE BOUND ESTIMATION

It is commonly assumed that the ANN satisfies the nonlinear regression model
y=f(x0")+¢ (1)

where x is the inputs, y is one of the outputs, 8* represents the true values of the set of parameters, and ¢ is the

error associated with the function f in modeling the system. Let 6 be the least squares estimate of 6* obtained

by minimizing the error function
n
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for a training set (y;,%;), ¢ = 1,--- ,n. The predicted output of the ANN, for the input xo, is
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Assume that ¢ is independently and normally distributed with zero means. The 100(1 — «) percent confidence

interval for the predicted value ¢g is go & ¢, where ¢ is (Chryssolouris et. al. 1996)
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Here tz/_ 2p is the inverse of the Student ¢ cumulative distribution function with n—p degrees of freedom, evaluated

at «/2, p is the number of parameters (dimension of ), and s2 = S()/(n — p). The vector fy is given by
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F is the Jacobian matrix given by
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Replacing 6* in Eq. (5) by é, we can estimate the confidence interval straightforwardly. Chryssolouris et. al.
(1996) used this method to compute the confidence bounds for a neural network model of a manufacturing
system. Hwang and Ding (1997) showed that this straightforward estimator is asymptotically valid, i.e.

Plypegote) > 1—a (7)
when number of training data points n goes to infinity. They also proposed that the size of the estimated

confidence interval could be used to choose the number of units in the network.

Shao et. al. (1997) incorporated the influence of the distribution of the training data in the estimation of the
confidence intervals. They used a wavelet-based method to estimate the density of the training data, and
modified the confidence interval as 5
c
(8)

1+ p/ Pmax
where p is the density estimate and ppax is the maximum value of p.
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De Veaux et. al. (1998) showed that the above method to compute the confidence interval works well when the
number of the training data is large. However, when the training data set is small and the network is trained



to convergence, the FTF matrix can be nearly singular. In this case, the estimated confidence intervals are
unreliable. Stopping the training prior to convergence, to avoid overfitting, reduces the effective number of
parameters and can lead to confidence intervals that are too wide. The authors used the weight decay method
(Haykin 1994) to prevent overfitting. That is to minimize the error function

0) + aiﬂf 9)
=1

instead of S(6), in the training (a > 0). The confidence interval for networks trained by weight decay is (de
Veaux et. al. 1998)
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For radial basis function neural networks, Leonard et. al. (1992) used a system called validity index network
(VI-net) to compute the confidence intervals. The system is called a network because the computation of
the confidence intervals and some other reliability measures are implemented as extra neural network units
associated to the original neural network. The confidence intervals given by the VI-net, for input xq, is

_ 2 vi(x0)e
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Here we assume that the network has only one hidden layer with m hidden units, and v;(x¢) is the output of
the j’th hidden unit. The value of c; associated to the j’th hidden unit can be predetermined as
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n; is given by
ny = _vj(xi) (13)
i=1

where v;(x;) is the output of the j’th hidden unit for training data x;. (Assuming that the training set has n
elements.) S; is given by
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Here ( f(x;0 ) gives the difference between the desired output (target) y; and the neural network output

f(x;;0) for training data x;.

In addition to the confidence interval estimation, the VI-net also computes the density of the training data, and
an indicator showing whether the network is extrapolating the training data at a given data point. The density

at data point xg is
m
p(x0) = >_j—10i(%0)p;
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where p; can be predetermined according to the training data

pi= % (16)

in which N is the number of dimensions of the input data.

(15)

The extrapolation indicator is the maximum activation of the hidden units

max-act = max {v;(x0)} (17)

If the test point xy moves away from the training data, the value of the maximum activation will decrease. A
small value of max-act can thus indicate extrapolation. We note that max-act and the density p are two related
quantities. A small value of max-act may occur for interpolation as well. However, there are some differences
between these two quantities (Leonard et. al. 1992).



POROSITY ESTIMATION

Seismic methods, which measure and interpret the response of earth subsurface due to a generated source
wavefield, have played an important role in oil exploration. Using modern acquisition technology, it is possible
to record a large amount of seismic reflection data, covering 2-D profiles or 3-D volumes. These data are
then interpreted to obtain information of subsurface structures. In addition to the structural information, it is
desirable to characterize the oil reservoir quantitatively. One of the quantitative measures is the rock porosity.

In porosity estimation, a moving window is applied to the seismic trace. Features, also called seismic attributes
(Justice et. al. 1985), are computed from the data within a window, and then used as input to a neural network
for the estimation of the porosity value. The neural network is trained by using the measurements obtained in
some actual wells, or data from some simulated wells (de Groot et. al. 1996). In this application, it is important
to know the reliability of the estimator, which can be assessed by the confidence bounds.

TEST FUNCTIONS

Some simple test functions, such as the sine function, were used to evaluate the confidence bound estimation
methods. In addition to these simple test functions, we have designed a 10-dimensional test function. Seven of
the ten input variables, x1,--- ,x7, are

rn = -t

ro = t%

xz3 = 1/(t1+2)
Ty = 11+t

5 = —t2

e — t%

xr7 = 1/(t2 + 2)

where ¢; and t; are random variables. Their distributions will have effect on the test result. The other three
input variables, xg, z¢9 and x19, are normally distributed random variables with zero means. The output is
y = sin(wt1). In this test function, 21, - ,x4 and x4, - ,27 are two correlated input groups, and x5, -, Z19
are irrelevant to the output. In all these test functions, we can add an observation noise to the input and the
output of the training data, and to the input of the test data. The observation noise is normally distributed
with a zero mean and a standard deviation up to 20% of the standard deviation of the data.

EXPERIMENTS

We first examined the shape of the estimated confidence intervals, especially how the estimated confidence
interval behaved when the density of the training data varied and when the test data extrapolated the training
data. We also examined the size of the estimated confidence interval. This was done by computing the coverage
of the confidence interval and examining whether the obtained coverage was, in average, close to the desired
coverage, and how large the variance of the coverage was.

We first used a sigmoid neural network to model a sine function y = sin x. The network had one hidden layer of
three nodes. The 30 training data points were unevenly distributed between —m and 7. The 200 test data points
were evenly distributed between —m and 7 + 7/2. When x > , the neural network extrapolated the training
data. The confidence bounds were computed by Eq. (4) when a squared error function was used, and computed
by Eq. (10) when a weigth decay error function was used. Typical results are shown in Figure 1. When the
standard algorithm given by Eq. (4) was used, the size of the estimated confidence interval could clearly reflect
the density of the training data. The confidence interval was large when the density of the training data was
low, and was extremely large in the extrapolation area. When x was increased, the size of the confidence interval
converged to a large value. In the case shown in Figure 1 (left), the size converged to about 600. When the
weight decay algorithm was used, the size of the confidence interval could still reflect the density of the training
data. Compared to the results given by the standard algorithm, the weight decay algorithm gave more smooth
confidence bounds. We also used a radial basis neural network with three hidden nodes to simulate the sine
function. The performance of the standard confidence bound algorithm, used together with a radial basis neural
network, was very similar to that used with a sigmoid neural network (Figure 2 left). However, the confidence
interval given by the VI-net less reflected the distribution of the training data (Figure 2 right).

Using 50 trials, we computed the average and the standard deviation of the coverage, to see whether the size
of the confidence interval is correct. For the sine test function simulated by the sigmoid neural network, the
results are shown in Figure 3 and Figure 4. We can see that a reduction of the size of the training set would
increase the average coverage (Figure 3). When there was no observation error (Figure 3 left), the average



Figure 1: A sine function simulated by a sigmoid neural network with one hidden layer of three nodes, trained
by minimizing a squared error function (left) and by minimizing a weigth decay error function (right). No
observation noise was added. Circles: training data points. Solid line: target function. Dotted line: neural
network output. Dashed lines: 90% confidence intervals.
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Figure 2: A sine function simulated by a radial basis neural network with three hidden nodes. Confidence bounds
esitmated by using Eq. (4) (left) and by using a VI-net (right). Circles: training data points. Solid line: target
function. Dotted line: neural network output. Dashed lines: 90% confidence intervals.

NUM. OF EPOCHS: 300, NOISE LEVEL: 0 NUM. OF EPOCHS: 300, NOISE LEVEL: 10
T T T 0.96 T T T T T

0.96

COVERAGE
o
©
&
COVERAGE

0.94

L L L L L L L L L L L L
0 200 400 600 8 1000 1200 1400 1600 0 200 400 600 8 1000 1200 1400 1600
NUMBER OF TRAINING POINTS NUMBER OF TRAINING POINTS

Figure 3: Average coverage as a function of number of training points. The sine test function was used. Left:
no observation noise. Right: 10% observation noise. Solid lines: average coverage computed from 50 trials.
Dashed lines: average coverage plus/minus its standard deviation.
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Figure 4: Average coverage as a function of noise level (left) and as a function of number of training epochs
(right). The sine test function was used. Solid lines: average coverage computed from 50 trials. Dashed lines:
average coverage plus/minus its standard deviation.
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Figure 5: Average coverage of the confidence interval, computed from 50 trials on a 10-dimensional test function.
Desired coverage was 90%. Solid line: x1,--- ,x3 were used as inputs. No observation noise. Dashed line:
1, -+ ,T10 were used as inputs. No observation noise. Dotted line: x1,---,T19 were used as inputs. 10%
observation noise.

coverage was smaller than the desired coverage (90% in this case), and went towards the desired coverage as
the number of training points increased. We added a normal distributed observation noise with zero mean and
a standard deviation which was of 10% of the standard deviation of the data without noise (Figure 3 right).
When an observation noise was added, the average coverage was significantly reduced and the variance of the
coverage was increased. However, the level of the observation noise did not have a clear effect on the average
coverage (Figure 4 left). The number of training epochs had neither a clear effect on the average coverage,
except when there was an observation noise and when the number of epochs was very small. In this special
case, the average coverage was increased (Figure 4 right). We have also observed that a reduction of training
epochs would increase the variance of the coverage.

In addition to the sine function, we have used some other simple test functions and the 10-dimensional function
to evaluate confidence bound estimation algorithms. In the most cases, the behavior of the confidence intervals
was very similar to that we observed on the sine function. The 10-dimensional function was simulated by a
sigmoid neural network with one hidden layer of three nodes. In the training data, ¢; was unevenly distributed
between -1 and 1, and in the test data, t; was evenly distributed between -1 and 2. Thus, the neural network
extrapolated the training data when t; > 1. The confidence bounds were estimated by the standard algorithm.
The irrelevant inputs in the 10-dimensional function reduced the average coverage in a way similar to the
observation noise, and the additional observation noise further reduced the coverage (Figure 5). In the presence
of both irrelevant inputs and observation noise, the average coverage was only about 60%, which was much lower
than the desired 90% coverage. This means that the average size of the confidence interval was just about 1/3
of the correct size, under the assumption that the error of the neural network output was normally distributed.
The irrelevant inputs also increased the variance of the coverage. When the training data set was small, the
irrelevant inputs often caused spikes on the confidence bounds (Figure 6 left). It seems that the irrelevant inputs
were over-fitted by the training process and they were extrapolated at the spike places. Increasing the size of



NUM. OF TRAINING POINTS: 25, NUM. OF EPOCHS: 100, NOISE LEVEL: 0
T T T T

NUM. OF TRAINING POINTS: 200, NUM. OF EPOCHS: 100, NOISE LEVEL: 0
T T T T T

-3 Lo L L L L -3 L L L L L
-1 -0.5 0 05 1 15 2 -1 -0.5 0 05 1 15 2
t t

Figure 6: Neural network simulation of a 10-dimensional function, using a training set of 25 points (left) and
200 points (right). Solid line: target function. Dashed lines: 90% confidence intervals. Crosses: neural network
outputs.
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Figure 7: Coverage of the confidence interval of the porosity estimates, obtained in 50 trials. Solid line: before
correction. Dashed line: after correction.

the training set would solve this problem (Figure 6 right).

We estimated the porosity values from synthetic seismic data by using a sigmoid neural network with one hidden
layer of five nodes, and computed the confidence bounds by the standard algorithm. With carefully selected
feature set, the neural network gave accurate porosity estimates and the coverage of the confidence interval
was very close to the desired coverage (90%). When we added some irrelevant features to the feature set, the
coverage was reduced to about 86%. We used a method to estimate the bias of the coverage and to correct the
confidence bounds. We divided the data into three sets, each with 1000 data points. One of the data set was
used as a training set, the others were a test set and an application set. The neural network was trained by
using the training set and then applied to the test set. The average coverage (1 — ;) was computed from 20
trials. When applying the neural network to the application set, the confidence bounds were corrected by

ag/2
Ccorrected = %C (18)

where ¢ is the size of confidence interval computed by the standard algorithm, function p(-) is the inverse of
the normal cumulative distribution function, and (1 — ) is the desired coverage. After the correction, the
obtained coverage was closer to the desired coverage, as shown in Figure 7.

DISCUSSION AND CONCLUSION

The existing confidence bound estimation methods are valid under certain assumptions, which are rarely satisfied
in practice. In this work, we evaluated the confidence bound estimation methods in various situations, by
changing the level of observation noise, the size of training set, the number of training epochs, and by adding



irrelevant inputs. The average coverage was used as a quantitative measure of the size of the confidence interval.
This measure, however, only describes one aspect of the estimated confidence interval. In fact, the shape of the
confidence interval is at least as important as the size of it. We do not have a quantitative measure to evaluate
the shape of the interval. Instead, we inspect whether the estimated confidence interval reflects the density of
the training data. We assume that the size of the confidence interval should be large in the area where the
training data are less dense, or are extrapolated.

The VI-net did not perform well on our test cases, as the size of the estimated confidence interval less reflected
the density of the training data. The training data density estimator and the extrapolation flag proposed by
Leonard et. al. (1992) are not dependent on the VI-net, and can be used together with the standard confidence
bound estimation algorithm. Compared to the standard algorithm, the weight decay algorithm given by de
Veaux et. al. (1998) reduced the size of the confidence interval when the number of training epochs was small.
In other cases, its performance was similar to the standard algorithm.

The standard confidence bound estimation algorithms normally gave satisfactory results. However, the size
of the estimated confidence interval could be biased due to various reasons, and the shape of the confidence
interval did not always reflect the density of the training data. It was observed that the estimated confidence
intervals were normally larger than the desired coverage when there was no observation error. Increasing the
number of training points would reduce the size of the estimated confidence intervals. The existence of irrelevant
inputs and observation error would reduce the coverage of the confidence intervals. In such cases, the variance
of the estimated confidence intervals could be very large when the number of training points was small. In
the presence of observation error, early stop in training would increase the coverage of the confidence intervals.
Irrelevant inputs would reduce the size of confidence interval in extrapolation areas, especially when the number
of the training points was small. Without irrelevant inputs, the size of the confidence interval would normally
approach an extremely large value when the training data were extrapolated. However, this value, depended on
the neural network parameters obtained by the training process, was impossible to predict, and could be too
small in certain cases.

In a practical prediction problem, it is desirable to compute the average coverage by using a test set. We have
proposed a method to estimate the bias of the coverage, and applied the estimated bias to correct the confidence
bounds. It is also desirable to have a large training set. Increasing the size of the training set will reduce the
variance of the confidence bounds. There exist some data density measures and extrapolation indicators. These
measures and indicators can be used as additional reliability assessment.
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