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hen an earth model is constructed from depth
migrated seismic data and porosity is predicted
from time migrated data, we are confronted with
spatially inconsistent information. To use the pre-

dicted porosities in the earth model the data needs to be con-
verted to depth and re-positioned. In this case study, we
present a pragmatic approach in which porosity trace posi-
tions were shifted after depth conversion to their correct x/y
positions followed by a vertical depth-to-depth transforma-
tion to correct the remaining misfit. The x/y shifts were cal-
culated by image ray map migration in the earth model.
Porosity was predicted from 3D time migrated data by
acoustic impedance inversion followed by pseudo-well mod-
elling and neural network inversion. 

With the increasing popularity of pre- and post-stack
depth migration more and more earth models are constructed
from horizons mapped on depth migrated data. Populating
such models with seismically derived (reservoir) properties is
not a trivial task, because properties are usually predicted
from seismic data in two-way time. Seismic inversion and for-
ward modelling techniques require a seismic wavelet. In
depth, the concept of a seismic wavelet does not exist, as the
wavelet is distorted by the time-depth transformation. This
problem is often solved by changing the depth migrated vol-
ume back to time by a vertical depth-to-time transformation
and using the resulting time volume for further quantitative
analysis. Transforming the predicted properties back to depth
is the way to populate the earth model. However, this proce-
dure assumes that amplitudes have been preserved by the
depth migration and subsequent depth-to-time transforma-
tion processes. This is questionable, which is why many quan-
titative interpretation specialists prefer to predict seismic
properties from conventional time migrated data. Using the
predicted seismic properties in a depth migrated earth model
poses another problem: the properties are not predicted at the
correct spatial positions, hence need to be corrected before
they can be used to populate the earth model. 

Data set and geological setting 
We base our analysis on a case study of a gas storage facility
onshore Germany that has been operational since the 1970s.

Gas is stored and retrieved from a chalky limestone called
‘Lithothamnienkalk’ at some 2900 m depth. The
Lithothamnienkalk main reservoir unit is approx. 45 m
thick and has porosities in the 10-20% range. The reser-
voir is sealed vertically by the so-called ‘Sannois-
Fischschiefer’ at the top, a marly shale interval overlying
the Lithothamnienkalk and laterally by juxtaposition
against impermeable formations. When the storage facility
is at full capacity it is believed to be filled near to spill
point, which is to the north of the structure, Fig. 1. 

A study was initiated to investigate the influence of
horizontal wells on the capacity of the gas storage. To
improve the quality of directional drilling through the nar-
row upper part of the reservoir additional 3D seismic data
was highly recommended. A 3D seismic data was acquired
in 2003. The vibroseis dataset covers an area of approx.
75 km2 with 25 x 25m bin spacing. The data were
processed to different volumes including pre- and post
stack depth and time migrated products. Eventually the
pre-stack depth migrated data were selected for mapping
the structural framework for the earth model and a time
migrated volume - especially processed for optimal preser-
vation of the seismic amplitudes - was used for further
quantitative analysis.

Twenty wells are located within the seismic survey
area, 14 of which are located inside the gas storage facili-
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Figure 1 Gas storage structure and well locations.
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ty area. Only two wells have complete logging suites with
sonic, density, vshale, porosity, and water saturation. To
complete the well log database, neural networks were
trained to predict missing and incomplete logs (Ligtenberg
and Wansink, 2002). In order to obtain reliable results, the
prediction of a log was based on several other logs, prefer-
ably three or more. Since the database was used to predict
and calibrate seismic properties, we required that one of
the input logs must be either sonic or density. Wells with
neither sonic nor density were not considered for further
work. Neural networks were trained per geological inter-
val to complete the database that eventually consisted of
13 wells with complete logging suites over the relevant
interval, Fig. 2. 

Quantitative seismic analysis
In this study several quantitative interpretation workflows
were applied for different objectives. Some workflows are
fast and aimed at increasing our understanding of the seis-
mic response, others are more laborious and aimed at pre-
dicting properties with uncertainties. All workflows make
use of modelled pseudo-wells (de Groot, 1995). In the con-
text of this study a pseudo-well is a high-resolution one-
dimensional model of the earth that consists of geological
layers with attached well log properties but which does not
have a spatial location. Pseudo-well logs are used to syn-
thesize seismic traces. Depending on a study’s needs the
seismic response can be synthesized as pre-stack gathers
for AVO analysis, or by convolution for post-stack analy-

sis as is the case in this study. Pseudo-wells are modelled in
GDI, dGB’s quantitative interpretation system. Wells (real
and pseudo) in GDI are blocked, and each blocked layer
has a unique identifier in terms of an integration frame-
work. This allows us to identify, analyze, and manipulate
log data at different geological scale units. Here we con-
ducted three applications of pseudo-well modelling: sensi-
tivity analysis, seismic patterns analysis, and rock property
inversion.

Sensitivity analysis
In sensitivity analysis we study the effect on the seismic
response caused by controlled variations in the geological or
petrophysical model. In this case we changed the thickness of
all reservoir units one at a time, and we studied the impact
of varying water saturation in the Lithothamnienkalk. We
learned that the seismic response at reservoir level was con-
trolled by variations in thicknesses of reservoir sub-units and
of porosities, but that water saturation effects are negligible.
Fig. 3 shows the results when we vary porosity in the reser-
voir unit from one-fifth of the average porosity to nine-fifth
of the average porosity. The basis of this modelling is Well L,
one of the two wells that had complete logging suites. The
un-altered well L is shown in Fig. 3 at the position marked in
red. For display purposes only 21 seismic traces out of 101
models are displayed. 

Pattern analysis
A set of real wells is rarely statistically representative for
the full area of interest. For example, if all wells are drilled
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Figure 2 Sonic and density logs before (top) and after (bottom)
neural network infilling.

Figure 3 Sensitivity analysis showing the impact of porosity
changes on the seismic response. Porosities are varied from 1/5th

to 9/5th the average porosity of the Lithothamnienkalk at Well
L (red line).
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on high amplitudes and a relationship exists between
amplitude and porosity, it is likely that all wells will have
similar porosities. Consequently, if these real wells are
used to predict porosity, e.g., by training a neural net-
work, the established relationship is only valid in areas
with high amplitudes. Generating a pseudo well database
may overcome this problem. In the simulator we can cre-
ate pseudo-wells that cover the entire range of expected
porosities with corresponding seismic responses. Training
a network on such a well database will thus yield a rela-
tionship that is valid over a much wider range. 

The pseudo-well simulator gets its input from real
well statistics and regional geological information. Real
well data is analysed to get correlations, statistical distri-
butions, rock-physics relationships, and optionally
Markov chains to capture lithology stacking patterns.
Geological information is supplied in the form of rules,
or by modifying the statistical input to create pseudo-
wells that were not yet sampled by the wells. Whereas in
sensitivity analysis only one parameter is changed at a
time, in a stochastic simulation several parameters are
changed simultaneously, resulting in many non-unique
seismic responses. In this case we generated 300 stochas-
tically simulated pseudo-wells in which all present logs
were randomly varied. The pseudo-well database was
used for analyzing waveform segmentation results and
served as input for predicting a porosity volume from

inverted acoustic impedance and seismic reflectivity vol-
umes.

Waveform segmentation (Aminzadeh and de Groot,
2004) is a popular technique for visualizing seismic patterns
pertaining to a certain horizon slice. The technique requires
a good-quality mappable event to extract the analysis win-
dow and works best in conformable settings. Seismic
waveforms (two-way time windows extracted around the
mapped event) are segmented (clustered) by a neural net-
work into a user-defined number of clusters. The cluster
centres are found in a separate step by training the net-
work on a representative subset of all waveforms. This
technique generates three outputs: 1) a seismic pattern
map, 2) a seismic match (or confidence) map, and 3) a
display of the cluster centres. 

The seismic pattern map shows us which areas have
similar seismic response and the cluster centres reveal
what the seismic response in each area looks like. The
match grid tells us how similar the seismic response at
each location is to the cluster centre. What the seismic
patterns mean in terms of geological or petro-physical
variations is not revealed and remains to be interpreted.
This is where pseudo-well modelling can help. The work-
flow is as follows: we create a pseudo-well database by
stochastically varying relevant properties and we synthe-
size the seismic response for each of these pseudo-wells.
Next we extract the seismic waveform (i.e. the two-way
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Figure 4 Waveform segmentation at Top Lithothamnienkalk in time gate [-18,26] into 10 classes. Top left seismic pattern
grid, top-right match (or confidence) grid and bottom cluster centres.
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time window) and feed this to the trained neural network.
The network compares the waveform with each of the
cluster centres and assigns the pseudo-well to the cluster
with the most similar waveform. In this way the entire
pseudo-well database is split into N clusters, where N is

the number of clusters the network was trained to recog-
nize. Finally we analyze each of the resulting pseudo-well
groups for variations in relevant reservoir properties in the
hope of establishing what each seismic pattern means in
terms of reservoir property variations. Fig. 4 shows a
waveform segmentation result. An example for the analy-
sis of porosity variation is given in Fig. 5. All 300 simulat-
ed pseudo-wells were clustered into 10 clusters. Due to the
non-uniqueness of the seismic method the results are not
un-ambiguous but it can be observed that some clusters are
prone to higher porosities in the uppermost reservoir unit
(e.g cluster 1 for unit TE.O.LIK.h.pr1).    

Rock property prediction
Acoustic impedance is a required input for predicting poros-
ity. Especially the low-frequency part of the acoustic imped-
ance volume is important for calibrating the absolute values
of the predictions. Therefore, band-limited acoustic imped-
ance inversion is not a suitable method for subsequent quan-
titative rock property predictions. In this case full
bandwidth acoustic impedance was created with Strata soft-
ware using the constrained model based inversion method.

The same stochastic pseudo-well database was then used
to train a supervised neural network to predict porosity
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Figure 6 Predicted porosity on an inline (top) and a cross-line (bottom) centred on the storage area.

Figure 5 Segmentation analysis: histograms and standard devi-
ation of porosity for members of the Lithothamnienkalk reser-
voir. Note, that no pseudo-wells were collected in clusters 5
and 6.
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from acoustic impedance and reflectivity input. The training
set was constructed by extracting input and output at every
sample position over the interval of interest (Berge et.al.,
2002). The trained network was applied in a horizon slice
relative to the mapped Top Lithothamnienkalk. Fig. 6 shows
two sections from the resulting porosity volume.

Populating the earth model
To bring the predicted porosities into the earth model we
now had to solve the position problems caused by working
with two different migration sets. First, we converted the
porosity volume from time to depth using the final velocity
model of the PSDM. The key horizons picked on the 3D
time migrated data were used to apply an image ray map
migration (Sattlegger and Zien, 1998) using Isp003 from
AtosOrigin. Image ray migration corrects for over-migra-

tion caused by neglecting refraction in the seismic time
migration process. The lateral shifting of the porosity vol-
ume in depth is based on the resulting displacement vectors
in x and y direction at the Top Lithothamnienkalk. The
maximum lateral shift is in the order of 80 m. Fig. 7 shows
the vectors indicating the local shift at each bin. 

The calculated shifts were used to re-bin the porosity
traces. Some bins did not collect any porosity traces. To
avoid holes in the data these positions were filled again
with an inverse distance interpolation algorithm. The final
step in the process was a vertical depth to depth correction
to correct a remaining minor misfit. The time horizon of
the PSTM interpretation was depth converted and shifted
in x and y direction with displacement results from the map
migration. The misfit between this depth horizon and the
depth horizon mapped directly on the PSDM volume
allowed us to calculate the shifts needed to arrive at the
final porosity volume (Fig. 8).

Conclusions
Quantitative seismic predictions are usually based on two-
way time volumes. To include such results in an earth
model the data must be transformed from time to depth. A
simple vertical time-depth conversion will do if earth model
and quantitative interpretation started from the same seis-
mic input. If on the other hand the earth model was creat-
ed from depth migrated data and the predictions were
based on time migrated data, the results must be re-posi-
tioned as well. In this article we discussed such a case and
presented a workflow for populating the earth model cor-
rectly with predicted porosities. 
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Figure 7 Calculated shift vectors between PSDM migrated
and PSTM migrated datasets at Top Lithothamnienkalk. The
vectors are showing the direction and magnitude of the shift
at each trace location.

Figure 8 Earth model with seismic porosities.


