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Segmentation of seismic data is an important visualisation
tool which helps geologists to interpret data. Important is-
sues for the design of a reliable seismic data segmentation
system are selection of features, choice of segmentation meth-
ods, and criteria for evaluating the results. We present some
results addressing the above issues.

Real seismic data were used in our experiments. Seis-
mic features were calculated from the seismic traces and
used as input for segmentation. The size and content of
the feature set were determined from a correlation analysis.
Two segmentation methods were tested and evaluated� the
hard c-means clustering (HCM) algorithm and the complete
linkage (CL) clustering algorithm. The number of clusters
was suggested by using Dunn’s index for cluster validation.
The HCM algorithm is most effective, but the CL algorithm
is deterministic and allows hierarchical access to the data.
The algorithms give visually comparable results.
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Interpretation of seismic data has played an important role
in oil exploration. Seismic data provides an image of the
sub-surface by recording at the surface the re�ections of
acoustic waves that were emitted into the subsurface by ex-
citing a high energy source such as dynamite (onshore) or
airgun (offshore). Huge amounts of 2D and 3D seismic data
are recorded by using modern acquisition techniques. Usu-
ally there exists no a priori information about the geological
structure, and performing a systematic analysis of all the
seismic data is time consuming.

By applying clustering methods to a seismic data set it
will be partitioned into � groups or clusters, with similar
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data placed in the same group. Ideally, each cluster should
correspond to areas with similar geological structure. The
number of clusters usually needs to be prede�ned by the
user. However, for some algorithms the number of clusters
is suggested by the algorithm itself.

Limited work is published in this �eld. Shen et al [5]
segments seismic images by the single linkage hierarhical
clustering method. The single linkage method tends to form
long and loosely connected clusters, which join each other
easily. Köster et al [6] extracts features both by using Gabor
�lter banks and by computing the instantaneous frequency.
A bottom-up region-growing method is used to cluster the
features. This method is compared to the single linkage al-
gorithm, and the region-growing method performs better.

We study two clustering algorithms applied to seismic
data, the hard c-means (HCM) and the complete linkage
(CL) algorithm [4]. The c-means algorithm place most of
the clusters in high-density areas, whereas the CL algorithm
spreads the clusters more evenly in data space. The HCM
algorithm is non-deterministic, and the resulting partition-
ing will vary with initialisation. The CL algorithm is deter-
ministic and builds a hierarchy of clusters starting on a local
level by merging nearby points. In order to validate the dif-
ferent partitions we calculate a generalised Dunn’s index [1]
to estimate the number of clusters.

We show that the CL algorithm is promising for analysing
continuous seismic data without any well-separated clus-
ters. It is robust, deterministic and allows hierarchial access
to the data.

The rest of this paper is outlined as follows: In section 2
we describe our data sets in more detail. In section 3 the
HCM and CL clustering algorithms are described together
with Dunn’s validity index. In section 4 we present our re-
sults and �nally, in section 5 we make some concluding re-
marks.



���� �. Seismic amplitude for line A.
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The seismic data are from onshore Germany. We study two
lines from a 3D volume (hereinafter referred to as lines A
and B). Each seismic trace consists of 851 data points. The
resolution is 4 ms, giving us a total time span in depth of
3.5 s. Seismic features based on the amplitude, frequency,
phase information of the seismic traces, and on the simil-
iarity between neighboring traces, were extracted from the
raw data by applying a sliding window technique along each
trace [2]. 17 different features were calculated in windows
of varying size centered around each point.
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The HCM algorithm [4] partitions the data set by minimis-
ing the following squared-error criterion:
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���� �. Dendrogram plot showing a hierarchy of 10 clusters.
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The HCM algorithm is based on iteration through Equa-
tion 2 and 3. One starts the algorithm by choosing 
 cluster
centres randomly. In our case we randomly pick 
 distinct
points from X as our initial cluster centres. The resulting
partition is calculated by 2 and the cluster centres are up-
dated according to 3. The algorithm is iterated until the
cluster centres stop moving, i.e., until ��w � �w�4� � � ,
where �w denotes the position of the 
 cluster centres after �
iterations.
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The complete linkage algorithm (CL) builds a hierarchy of
clusters by merging samples and clusters, thus forming clus-
ters of clusters [4]. The result can be visualized in a dendro-
gram plot� see Figure 2.

The merging decision is based on calculation of the in-
tercluster distances. The single linkage de�nes the distance
between the clusters as the closest pair of sample points in
each cluster (also called the nearest neighbour algorithm)
[3], [5]. It tends to produce long and loosely connected clus-
ters, and the algorithm is sensitive to outliers. The class of
averaging algorithms, where intercluster distances are de-
�ned from some average measure of the cluster, are less
sensitive to outliers than the single linkage algorithm. The
complete linkage (CL) algorithm de�nes in contrast to the
single linkage the furthest distance between samples in each
cluster as the intercluster distance (4):

���l� �m� � �������l��m����l � �l��m � �m (4)

where �l denotes the set of feature vectors belonging to
cluster 
. The complete linkage algorithm generally �nds
tight, hyperspherical clusters that join others only with dif-
�culty. These qualities makes the complete linkage distance
measure well suited for our application.



By cutting the resulting dendrogram tree at a speci�ed
horizontal level, and follow each branch to its leaf (i.e. the
original samples), all samples are assigned to a cluster. The
cluster centres � � ��4��5� �����q� are de�ned as the cen-
troid of all its sample members:
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In order to validate a resulting crisp partition � there are
several different validity indexes that can be calculated. All
these indexes try in one way or other to maximise the ra-
tio between intercluster distance � and cluster diameter �.
Dunn’s index (DI) is based on geometrical considerations
and is designed to identify sets of clusters that are compact
and well separated [1]. Simply stated it evaluates the ra-
tio between the shortest intercluster distance and the largest
cluster diameter and is de�ned by:
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Dunn used the minimum distance between points in a
pair of set as a measure of the intercluster separation �. This
measure of interset distance is sensitive to outliers in the
clusters and in [3] the Dunn’s index is generalised by using
more robust estimates of both cluster diameter and inter-
cluster distance.

The cluster diameter � of cluster 
 is de�ned to be the
average Euclidean distance between all points �l belonging
to the cluster and the cluster centre �l:
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where 	l is the number of samples belonging to cluster 

and the multiplier of 2 converts a radius to a diameter.
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In general, clustering of data gives bad results if the clus-
tering features are not selected with care. We have used a
rough feature selection method based on a correlation anal-
ysis of the data. Our goal is to remove redundant features,
and features without structure.

In order to �nd redundant features we �rst calculate the
	�	 correlation coef�cient matrix �. Here �lm is the cross

���� �. Dunn’s index for 2-15 clusters with the CL algorithm
(highest Dunn’s index for 
 � 
) and the HCM algorithm.

correlation between traces of feature 
 and feature � evalu-
ated at several different cross-line positions. The matrix re-
veals that the different energy features are redundant. This
is also the case for the three different similarity features.
In addition, the two amplitude features and the two gradi-
ent features are strongly correlated with the energy features.
Therefore it is enough to choose one of these features for
the clustering. Noisy features (phase and count zero cross-
ing) were disregarded. We chose energy and similarity in a
����� ��
 window as our two �nal features.

The data set was normalized to zero mean and unit vari-
ance.
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The data sets we consider in this paper consist of ��� �
��� � ������ sample points. In order to speed up the ex-
ecution time, the clustering algorithms are run on subsam-
pled parts of the complete data sets. Such an approach is
quite similar to what is done in supervised learning or classi-
�cation, where the algorithms learn by adapting to a limited
set of training points. For the algorithms to perform well
it is then important that the training set is representative to
the whole data set. In the examples shown below every 20th
point in the horizontal and vertical directions is subjected
to the clustering algorithms, i.e., a total of 830 points. By
doing so, the computing time is reduced drastically. After
clustering the training data, all the other sample points in
the data set are presented to the resulting partition in turn,
and placed into the most nearby cluster according to a Eu-
clidean distance measure. Increasing the density of training
samples does not alter the clustering results by much.

The �nal segmentation plots are obtained by transform-
ing back to real space. The sample points are coloured ac-
cording to which cluster they belong to.
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Figure 3 shows a plot of Dunn’s validity index (DI) for

 � 	� �� ���� �� clusters for both the HCM algorithm and
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(a) CL segmentation plot
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(b) HCM segmentation plot

���� -. Segmentation results of line A for 
 � �.

the CL algorithm. The HCM values are obtained by av-
eraging over 50 different initialisations for all values of 
.
According to the DI values, the different partitions do not
vary much. The largest variation is found for 
 � �, where
the standard deviation ��� � � ���� for the 50 initialisa-
tions. Visual inspection of the 
 � � segmentation plots
for the best and worst partition reveals very little difference.
According to Dunn’s index, the best partition of the data set
is obtained with 
 � 	 clusters for both algorithms. How-
ever, geologists are interested in �ner details� typically they
cluster 6-10 clusters. Dunn’s index at 
 � � indicates that
the CL clustering is better than the HCM clustering. This
can be seen in the segmentation results in Figure 4, where
the CL plot is smoother with more well-de�ned layers than
the HCM plot.

The approach presented in this paper was also applied
to line B. The segmentation results were similar.

.� ������	��
 ���
�/�

We have studied two different clustering algorithms applied
to seismic data: the hard c-means clustering algorithm and
the complete linkage algorithm. The performance of the
algorithms was evaluated by calculating Dunn’s validity in-
dex. According to this index, the best partition of the data
sets is obtained with 
 � 	 clusters. This coincides with a
visual inspection of the scatter plots.

The CL algorithm spreads the cluster centres more evenly,
whereas the HCM algorithm places most of the cluster cen-
tres in high density areas. According to Dunn’s validity in-
dex, the CL algorithm performs better when the number of
clusters is small (in our example less than 7). This obser-
vation agrees qualitatively with the resulting segmentation
plots: for small values of 
 the CL algorithm seems to reveal
more of the geological structure than the HCM algorithm,
whereas for high values of 
 the HCM algorithm gives better
segmentation plots. The HCM algorithm is more ef�cient,
but as the CL algorithm gives hierarchial access to the data
it is suitable when both an overview of the data as well as
detail inspection of segments is requested.
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