
Appendix I: Geology-Driven Integration (GDI) 

1.1 General 

dGB has developed dGB-GDI, a geoscientific software portfolio for quantitative 
interpretations. In this system data and knowledge are combined in a geological way. For this 
purpose the user defines an integration framework at the start of each project. This is a generic 
description of the subsurface in terms of geological objects with attached physical properties 
(non-numeric features) and quantities (numeric features), Section 1.2. The objects are defined 
in a tree of objects resembling a hierarchical ordering system in sedimentary geology. There 
are no restrictions within the software w.r.t. the definition of the objects and their hierarchy, 
nor to the properties and quantities; these are completely user-defined. This implies that any 
hierarchical ordering system can be projected into the integration framework and there be 
combined with any property and quantity of interest. In other words the concept can be used in 
many geoscientific studies ranging from basin analysis to quantifications at pores-and-grains 
scale level.   
 
In this proposal the integration framework concept will be used to link the stratigraphy to 
physical well log properties and seismic signals. Within dGB-GDI integrated datasets can 
either be based on factual well data, or on simulated well data via the software’s pseudo well 
simulator, Section 1.3. With this simulator wells, i.e. one-dimensional stratigraphic profiles 
with attached physical properties and quantities (logs) can be generated. The acoustic quantities 
of these pseudo-wells are used to generate synthetic seismograms. In dGB-GDI the 
convolutional forward model is used for this purpose. The input to the simulator consists of a 
combination of geological reasoning and statistical information derived from neighbouring 
wells. 
 
Within dGB-GDI the integrated dataset (factual, simulated, or a combination of both) can be 
analysed, interpreted and quantified. The software offers functionality for statistical 
manipulations and visual inspections. Artificial neural networks are used to establish non-linear 
relationships between quantities of interest and geological objects, Section 1.4. 
 
 

1.2 Integration framework 

The aim of quantitative interpretation is to assign numbers, or probabilities to an interpretation. 
In most quantitative interpretations various types of information with widely varying scales and 
acccuracies need to be combined. In seismic reservoir characterisation, for example, low(er) 
resolution seismic data is combined with high resolution stratigraphic and log information 
derived from wells. The objective in seismic reservoir characterisation is to relate the seismic 
signals to the smallest-possible stratigraphic events, or to physical properties and quantities 
belonging to these events. The implication is that we require a description of the subsurface in 
a detail that corresponds at least to the scale level that can be extracted from the seismic data.  



 
Jamada El Oula 

  
 

 
By describing a geological model at different stratigraphic levels, the model is defined at 
natural scale levels. Unfortunately, in sedimentary geology many different hierarchical 
ordering systems are used, Fig. 1. 1. The choice of ordering system depends on the kind of 
geoscientific study. For a general-purpose tool like dGB-GDI this implies that for each study 
the user must be completely free to determine the ordering system as well as the kind of detail 
that is required. In dGB-GDI the user defines the stratigraphic setting in terms of geological 
objects (framework units) which are ordered in a tree, Fig. 1.2.  
 
A second requirement for a general-purpose quantitative interpretation tool is that also 
complete freedom must exist in the kind of data that is to be studied. In dGB-GDI the user 
defines which properties and quantities he wants to study in a separate dictionary. A distinction 
is made between properties, quantities and overlay-quantities. Properties are enumerations; 
they describe non-quantitative intrinsic properties of a framework unit. For example ‘reservoir-
type’ could be a property with enumeration ‘seal’, ‘reservoir’ and ‘waste’. Properties are used 
for data identification and manipulation. The reservoir-type property can e.g. be used to 
compute net-to-gross ratio’s for each of the realisations. Quantities are properties to which a 
value or a probability can be assigned. Examples are acoustic properties, thickness, porosity, 
permeability etc. Overlay-quantities are special kind of quantities. They are the result of 
circumstances that are not intrinsic to the framework unit. These quantities appear in groups 
that are mutually exclusive. For example a formation can be oil-, gas-, or, brine-filled. The 
overlay-quantities ‘Oil Column’ and ‘Gas Column’ may appear in porous rocks only. As a 
result of the overlay-quantity, specific quantities are modified. In the case of hydrocarbons the 
acoustic quantities are modified. The concept of overlay-quantities can therefore, be used to 
describe geological phenomena that cut right through the geometrical description in terms of 
framework units. Other examples of overlay-quantities are shear-zones or diagenetic-zones that 
modify the quantity porosity by, respectively, fractures and cementation. 
 

 2 



 
Jamada El Oula 

  
 

Observational / Descriptive Units Interpretation

Lithostratigraphic 
Unit

Stratal Units Lithofacies Unit Sedimentary
depositional 
feature

Examples

lamina 
horizontal 
and foreset

lamina

bed
lamina set

bed

simple 
bedset

composite
bedset

bedset

Parasequence

Parasequence set

Sequence

be
d

m
em

be
r

fo
rm

at
io

n

gr
ou

p

lithofacies

lithofacies association

family of lithofacies 
associations

suite of lithofacies 
families

depositional event avalanche

depositional 
process

migrating 
sand wave

sub-environment

major-environment

supra-environment

channel

alluvial plain

continental

Reineck & Singh, 1973
Van Wagoner et.al., 1990
Campbell, 1967
Hedberg, 1976
Reijers et.al., 1993

1
2
3
4
5

1

1

1

1

3

3

3

4

5

 
       
Fig. 1.1  Examples of hierarchical ordering systems used in sedimentary geology.  
 
 
The integration framework is completely defined after the user has selected which properties 
and quantities must be attached to each of the geological objects defined in the tree. It is a 
generic definition of the subsurface. The defined objects are the building blocks for 
constructing geological models with attached physical properties and quantities. These models 
are called ‘realisations’ of the integration framework. They are either descriptions of 
deterministic data (factual wells) or they are simulated, Section 1.3. 
 
 

 3 



 
Jamada El Oula 

  
 

Zechstein

Salt

A2

Anhydrite

Salt

Carbonate

Shale

Properties:
  Reservoir_type (seal, waste, reservoir,undefined)

Quantities:
  Sonic
  Density
  Porosity

Tree of objects

Dictionary

Attached properties 
and quantities

Reservoir_type=waste
sonic
density

 
       
Fig. 1.2 Part of an integration framework. It is defined in three steps: 1) a dictionary 

defines the properties and quantities to be studied 2) geological objects are 
defined in a tree reflecting the hierarchical ordering system and 3) selected 
properties and quantities are attached to each of the objects. In the figure the 
attachments of the object ‘Carbonate’ are shown. The objects in the 
integration framework tree can be denoted nodes and leaves, or parents and 
children. Nodes and leaves refer to the position in the tree with a leaf always 
being at the smallest scale-level. Parents and children refer to inheritance with 
a parent always at a larger scale-level than its children. 

 
The integration framework concept is neither limited to one-dimensional models, nor is it 
limited to seismic reservoir characterisation processes. It is a general concept that can be 
used in many geo-scientific applications requiring flexible and scale-dependent 
descriptions of geological models with attached physical properties and quantities. 
 

1.3 Simulating wells 

The aim of the simulation is to generate a set of 1D-stratigraphic profiles with attached 
physical properties and quantities (logs) but without spatial information. The simulated 
acoustic quantities of these wells are used to generate synthetic seismograms. Operating in 
this way a representative dataset is generated which can be analysed for relationships 
between seismic response and underlying well properties.   
 
Input to the simulation algorithm is a combination of stochastic information and geological 
knowledge. It is considered important that  simulated models are realistic representations 
of the subsurface. This implies that the simulation must be controlled by geological 
reasoning and that unrealistic stochastic realisations can be redrawn. In dGB’s simulation 
algorithm the predictable patterns are captured either in terms of geology-related rules and 

 4 



 
Jamada El Oula 

  
 

constraints attached to the objects of the defined integration framework (Section 1.2) or by 
Markov chains (see e.g. Sinhval and Sinhval, 1992). In Markov chains, stratigraphic 
sequences are simulated using probabilities that a series of lithologies follow each other in 
a predictable pattern. To deal with the uncertainty, stochastic input is supplied in the form 
of probability density functions (pdfs) and correlation coefficients. In dGB-GDI pdfs can 
be either constant, normal, uniform, calculated, or stepping from one value to another. The 
normal distribution can be constrained by lower and upper boundaries. Any two variables 
defined in the system can be correlated with each other by specifying their correlation 
coefficient. 
 
Let us consider the integration framework to be a tree consisting of a hierarchical grouping 
of geological objects. In object-oriented terminology these are called parents and children. 
Parents and children refer to inheritance with a parent always at a larger scale-level than 
its children, Fig. 1.2. Properties and quantities defined for a parent will also be valid for 
the children unless these are specifically defined for the children as well. The objects in 
the tree can also be denoted in terms of nodes and leaves. Nodes and leaves refer to the 
position in the tree with leaves always being at the smallest scale-level. Leaves are the 
smallest building blocks for constructing new realisations. Acoustic pdfs are assigned to 
the leaves. Rules are attached to nodes. For each node the user can either use Markov 
chain probabilities, or define the following construction rules: 
 

•  Should the thickness be drawn? If not, the thickness will be determined by the 
simulated thicknesses of the children. 

•  Should the children be drawn in sequential order, or by random selection? 
• Should the last unit be drawn first? If so, the parent will be constructed from the 

bottom upwards. 
•  Are the children’s thicknesses ratio’s? In this case the selected draws for the 

children’s thicknesses will be squeezed, or stretched to fill the selected draw for the 
parent’s thickness. 

•  Are immediate repetitions for children allowed? This determines whether a child can 
be followed by a similar child in the construction of the parent. 

•  What is the maximum number of draw cycles? This determines the number of cycles 
the simulator will go through all children to construct the parent. 

•  What is the maximum number of children? This rule sets a limit to the number of 
children within the parent. 

  
In addition to these construction rules the user can control the selection probabilities of all 
objects via so-called Existence  constraints. Three types of existence constraints are 
presently supported: 
 

•  Presence. This determines the percentage of all wells to be simulated that will 
feature the object.  

•  Generation. This is the probability that the object can be selected per draw. 
•  Occurrence. This is the maximum number of occurrences per parent that is allowed. 

 

 5 



 
Jamada El Oula 

  
 

The combination of construction rules, existence constraints and correlation coefficients 
represents a flexible and powerful way for simulating different geological settings. For 
example, correlations coefficients may be used to control bed-thicknesses to reflect a 
thickening sequence. The same phenomenon can also be achieved with the ratio rule, 
however. When generation of children is used in combination with drawing a thickness for 
the parent, the composition of the parent can be controlled (e.g. sand-prone vs shale-prone 
parents). The presence rule dictates how many wells, out of the total number of 
simulations, will feature a specified object. It can be used for example to control erosional 
effects. The occurrence rule dictates how often an entity can occur per simulated well. 
Occurrence is typically used for objects that defy normal stratigraphic behaviour. It can be 
used e.g. to simulate a volcanoclastic layer cutting through a sedimentary sequence.  
 
This concludes the discussion on the simulation algorithm. For details on the mathematics  
see de Groot et.al. (1996). 
 
 

1.4 Artificial neural networks 

1.4.1 General 
 
Artificial neural networks, or connectionist models as they are sometimes referred to, have 
been inspired by what is known as the 'brain metaphor'. This means that these models try to 
copy the capabilities of the human brain into computer hardware or software. The human brain 
has a number of properties that are desirable for artificial systems (e.g. Schmidt, 1994): 
 
• It is robust and fault tolerant. Even if nerve cells in the brain die (which is known to happen 

every day), the performance of the brain does not deteriorate immediately. 
 
• It is flexible. This means that the human brain can adjust itself to new situations and can 

learn by experience. 
 
• It can deal with information that is inconsistent, or contaminated with noise. 
 
• It can handle unforeseen situations by applying knowledge from other domains and 

extrapolating this to new circumstances. 
 
• It can deal with large amounts of input data and quickly extract the relevant properties from 

that data. 
 
• It is highly parallel, hence it has a high performance. 
 
Neural network research started in the forties. McCulloch and Pitts (1943) described the logical 
function of a biological neuron. They described that the transmission of neural signals is an all-
or-nothing situation. A neuron fires only, if the cell has been stimulated above a certain 
threshold. The output signal will, in general, have a constant strength. In their paper, 

 6 



 
Jamada El Oula 

  
 

McCulloch and Pitts, described that networks consisting of many neurons might be used to 
develop the universal Turing machine (a kind of computer described by Turing (1937) that 
could, in principle, solve all mathematical problems). Research in neural networks was 
suddenly stopped following a publication by Minsky and Papert (1969). In this paper, it was 
shown that a relatively simple problem (the so-called XOR-problem) could not be solved by 
the linear algorithms used at the time. The major breakthrough which re-launched the interest 
in this technique has been the discovery in the eighties of a non-linear optimisation algorithm 
overcoming the previous limitations (Rumelhart et. al, 1986). 
 
Neural networks have emerged in the last decade as a promising computing technique which 
enable computer systems to exhibit some of the desirable brain properties. Various types of 
networks have been applied successfully in a variety of scientific and technological fields. 
Examples are applications in industrial process modelling and control, ecological and 
biological modelling, sociological and economical sciences, as well as medicine (Kavli, 1992). 
Within the exploration and production world, neural network technology is now being applied 
to geologic log analysis (Doveton, 1994) and seismic attribute analysis (Schultz, 1994). 
 
In dGB-GDI neural networks are used for pattern recognition. Three approaches can be 
recognised in neural network pattern recognition (Lippmann, 1989): supervised training, 
unsupervised training and combined supervised-unsupervised training. Supervised training 
approaches require the existence of representative datasets. Unsupervised techniques find 
structure in the data themselves, thereby extracting the relevant properties. In dGB-GDI Multi-
Layer Perceptrons and Radial Basis Function networks are available for the supervised training 
approach. Unsupervised Vector Quantisers are available in the unsupervised mode. These 
networks are introduced in the following sections. 
 

1.4.2 Multi-layer perceptrons (MLP) 
 
The most general and most widely used neural network model is the 'multi-layer perceptron 
(MLP)'. The basic building block of this model is the perceptron (Fig. 1.3), a mathematical 
analogue of the biological neuron, first described by Rosenblatt (1962). 
 
The mathematical expression of the biological neuron can be written as an activation function 

 applied to a weighting function W , defined as: A
 

  W(y) = wi yi
i=0

L
∑ ,          (1.1) 

 7 



 
Jamada El Oula 

  
 

dendrites

cell body
axon

electrical 
pulse

y

yL

1

y2

w1

w2

wL

W (y) A (W)

 
 

       
Fig. 1.3 A biological neuron and a Perceptron 
 
where: 
y  is the neural network input vector written as  with iyi = 1,..., L  and weighting vector w  
with i .  

i
= 1,..., L

 
The activation function of the classical perceptron (Fig. 1.4a) can now be written in the 
following form: 
           

 A(W) =
1 W > 0

0 W ≤ 0

 
 
 

.         (1.2) 

 
In MLPs the binary activation function is often replaced by a continuous function. The most 
widely used activation function is the sigmoid function (Fig. 1.4b). This function has the 
following form:  
 

 A(W ) =
2

1 + exp −W( )
− 1.        (1.3) 

 

 8 



 
Jamada El Oula 

  
 

-3 -2 -1 0 1 2 3

-1

1

a) Perceptron
A(R)

R

-3 -2 -1 0 1 2

-1

1

b) Sigmoid
A(R)

R

3

-3 -2 -1 0 1 2 3

-1

1

c) Linear
A(R)

R

-3 -2 -1 0 1 2

-1

1

d) Ramp
A(R)

R

3

-3 -2 -1 0 1 2 3

-1

1

e) Tangent hyperbolic
A(R)

R  

       

Fig. 1.4 Different activation functions for MLP networks as supported in dGB’s 
software. The prime-tangent hyperbolic function was used in this project. This 
function has the same mathematical expression as the tangent hyperbolic 
function but the update rules differ (see below). 

 
Other activation functions supported by the software are the linear, ramp and tangent 
hyperbolic functions. The linear function (Fig. 1.4c) is defined as: 
 
 A(W ) = W .           (1.4) 
 
The ramp function (Fig. 1.4d) is given by: 
 

 .        (1.5) A(W ) =
−1 W < −1

W −1 ≤ W ≤ 1

1 W > 1

 
 
 

  

 
The tangent hyperbolic function (Fig. 1.4e) is written as: 
 

 A(W ) =
exp W( )− exp −W( )
exp W( )+ exp −W( )

.        (1.6) 

 9 



 
Jamada El Oula 

  
 

 
Two other activation functions are supported in dGB’s software: the prime-sigmoid and prime-
tangent hyperbolic. These functions have the same mathematical expressions as equations (1.3) 
and (1.6), respectively. The training algorithm treats the two types of functions differently. For 
the sigmoid and tangent hyperbolic functions, the derivative is used to update the weighting 
vector (Rich and Knight, 1991). For the prime-sigmoid and prime-tangent hyperbolic functions 
an offset is added to the absolute value of the derivative. This is done exclusively to avoid 
saturation problems during learning, where saturation means that continued learning does not 
lead to improved network performance. This modified procedure is used to update the 
weighting vector.  
 

Input 
layer

Hidden 
layer

Output 
layer

Information 
flow

processing 
elements

connection  
weigths

 
       
Fig. 1.5 Schematic representation of a feed-forward layered neural network, such 

as a Multi-Layer Perceptron and a Radial Basis Function network.  
 
In a MLP the perceptrons are organised in layers (Fig. 1.5). In its simplest form, there are three 
layers; an input layer, a hidden layer and an output layer. There are no connections between 
neurons belonging to the same layer. The data flow between the layers is feed-forward. MLPs 
are trained on a representative dataset. This is a form of supervised learning. Known examples, 
consisting of input patterns and corresponding output patterns, are repeatedly offered to the 
network during the training phase. The 'back-propagation', learning, algorithm that is widely 
used to train this type of network attempts to minimise the error between the predicted network 
result and the known output by adjusting the weights of the connections. The  algorithm was 
derived independently by a number of researchers. The modern form of back-propagation is 
often credited to Werbos (1974), LeCun (1985), Parker (1985) and Rumelhart et. al. (1986). A 
fast variation of backpropagation is given by Fahlman (1988). 
 
MLPs have two properties of interest: abstraction and generalisation. Abstraction is the ability 
to extract the relevant features from the input pattern and discard the irrelevant ones. 
Generalisation allows the network, once trained, to recognise input pattern which were not part 
of the training set. 

 10 



 
Jamada El Oula 

  
 

 

1.4.3 Radial Basis Function Neural Networks (RBF) 
 
Radial basis functions have been used for data modelling (curve fitting) by many researchers, 
e.g. Powell (1987) and Poggio and Girossi (1989). Recently these functions have been put in a 
neural network paradigm in what is called Radial Basis Function (RBF) Neural Networks 
(Broomhead and Lowe (1988), Moody and Darken (1988), Lee and Kil (1988), Platt (1991)). 
Schultz et.al. (1994) applied RBF networks in a seismic reservoir characterisation study.  
 

Input 
layer

Hidden 
layer

Output 
layer

y
1

A
1
(R)

A
2
(R)

o1

w1

w2

 
       
Fig. 1.6 Schematic representation of a Radial Basis Function network for the case 

of a single input variable, two basis functions and one output variable. 
 
RBF networks have the same feed-forward layered architecture as MLP networks (Fig. 1.4), 
but the weighting function W  and the activation function  are different. With RBF networks, 
there are only weights between output layer and hidden layer (Fig. 1.6). Each node in the 
hidden layer has a unique function, called the basis function. For the simple network of Fig. 1.5 
with a single input, single output and two basis functions, the output is given by the sum of the 
two basis functions, each multiplied with its own weighting factor. In principle, any type of 
function can be used to act as basis function. For example, spline functions are used (Kavli, 
1992), but the identification RBF network, applies only if radial basis functions are used.   

A

 
Radial basis functions give local support to data points. The output of the hidden nodes, peaks 
when the input is near the centroid of the node, and then falls of symmetrically as the 
Euclidean distance between input and the centroid of a node increases (Fig. 1.7).  The 
consequence of this behaviour is that RBF networks are good for data interpolation, but not 
good for data extrapolation.   
 
Several different radial basis functions are in use, with the Gaussian function (Fig. 1.7a), being 
the most widely used. If the radial basis centre  is defined as: R
 

 R =
yi − µi( )2

σi
2

i=1

L
∑ ,         (1.7) 

 
where: 

 11 



 
Jamada El Oula 

  
 

µi  represents the centre location of each basis and σi  indicates a scaling of the width of each 
basis, then the Gaussian activation function is given by: 
 

 A R( ) = exp −
R2

2

 

 
 

 

 
 .         (1.8) 

 
Multiplication of the activation function  with a weighting factor w  then yields the 
output o  (Fig. 1.6). 

A(R)

 
Another widely used RBF function is the so-called Inverse Multi-Quadratic Equation (IMQE, 
Fig. 1.7b), defined as: 
 

 A R( ) =
1

R + k 2
,          (1.9) 

 
where: 
k  is an empirically determined smoothing factor (default 0.5 in dGB’s software). 
 
Note, that the widths in RBF functions are specified independently from each input dimension, 
making the functions elliptic rather than spherical. Note as well, that unlike the activation 
functions for MLPs no bias is included in the RBF functions. 
 

-3 -2 -1 0 1 2 3

-1

1

a) Gaussian
A(R)

R

-3 -2 -1 0 1 2
-1

1

b) IMQE
A(R)

R

3

2

 
       

Fig. 1.7  Activation functions supported in dGB’s software for RBF networks. The 
Gaussian function has a µ of 0 and a σ of 1. The IMQE function has a 
µ of 0, a σ  of 1 and a k of 0.5. 

 
Centre locations are typically determined by randomly selecting training examples from a large 
set of training data. The smoothing parameters and the number of nodes are typically adjusted 
empirically during training. RBF neural networks and MLPs have been compared by many 
workers. Kavli (1992) reported consistently better performance of RBF networks in five 
independent experiments. Another important aspect when comparing RBF networks and MLPs 
is the training speed. RBF networks can be trained within a fraction of the time that is required 
for training MLPs. RBF networks, however, generally require more nodes to obtain similar 
performances. 
 

 12 



 
Jamada El Oula 

  
 

One of the training algorithms in dGB’s software for RBFs is the so-called HSOL algorithm 
(Lee and Kill, 1989, Carlin, 1992). HSOL uses standard back propagation for updating the 
function parameters, but this learning algorithm also dynamically allocates new nodes in the 
hidden layer during training. 
 
   

 13 



 
Jamada El Oula 

  
 

1.4.2 Unsupervised Vector Quantiser networks 
 
In the preceding section Multi-Layer Perceptrons and Radial Basis Functions neural networks 
were introduced. These types of network belongs to the category of supervised learning 
approaches. Datasets with known input and target vectors are used to train and test these 
networks. In this section a type of network is introduced that belongs to the category of 
unsupervised, or competitive learning: the Unsupervised Vector Quantiser. The general aim of 
competitive learning is to find structure in the data themselves and thereby extracting the 
relevant properties or features. In the case of the UVQ the aim is to segment (cluster, classify) 
the data. Similar input vectors must be classified in the same category. The classes are found 
by the network itself from the correlations of the input data. Therefore, these networks are 
sometimes referred to as self-organising networks.  
 

Input 
layer

Hidden 
layer

Output 
layer

y
1 h

1

h
p

o1

y
L

o2

h
K

.

.

.

.

.

.

.

.

.

.
wp,1

wK,1

index p

degree of 
match mw1,L

wp,L

wK,L

w1,1

Vector Quantiser Post-processing

 
       

Fig. 1.3 Schematic representation of the Unsupervised Vector Quantiser, as used 
in this study. The network consists of a vector quantiser part and a post-
processing part. Two outputs are generated: the index of the winning 
hidden node (i.e. the class) and a degree of match, which indicates how 
close the input vector is located near the centre of the class. 

 
The UVQ that will be used is a modified version of a Learning Vector Quantiser (LVQ). 
Vector quantisation is an important application of competitive learning for data encoding and 
compression (Hertz et.  al., 1991, and Haykin 1994). In vector quantisation an input vector is 
replaced by the index of the winning output unit. Vector quantisation requires a set of classes, 
or codebook to exist. Normally, a set of prototype vectors is used. The class is found by 
calculating the Euclidean distance to the prototype vectors. The nearest prototype vector is the 
winner. LVQ's are a supervised version of vector quantisation. In this case the prototype 
vectors are updated closer to the input, following a successful classification and further away 

 14 



 
Jamada El Oula 

  
 

from it when the classification is unsuccessful. 
 
The unsupervised vector quantiser (UVQ) is quite similar to the LVQ. The prototype vectors 
are in the unsupervised case initialised as random vectors. The vector closest to the input vector 
is updated in the direction of the input vector.  
 
The UVQ in this study consists of a two-layer vector quantiser followed by a post-processing 
output-layer (Fig. 1.3). In the vector quantiser part of the network, a single layer of hidden 
nodes h  with i , where i = 1,..., K K  indicates the number of classes, is fully connected with a 
set of input nodes  with y j j = 1,. L. .,  via excitatory connections w . For each hidden node 

the net output is computed as the Euclidean distance to the input: 
i, j

 

 hi y( ) = (yj − wi, j )
2

j =1

L

∑ i = 1,..., K .       (1.1) 

 
In the learning phase the net outputs of all hidden nodes (classes) are compared in the post-
processing layer. The hidden node with the smallest net output is designated the winner.  The 
weighting vector w  associated with the winning node p, j p  is then updated according to: 

 

wi, j
' =

wi, j i = 1,..., p −1, p +1,...K j = 1,..., L

wp, j + η y j − wp, j( ) j = 1,...,L,
 
 
 

    (1.2) 

 
where: 

η  is a empirically determined learning rate parameter and w  is the updated weighting 

matrix. This update rule is known as the standard competitive learning rule. Updating is 
continued until no noticeable changes in the prototype vectors are observed.  

i, j
'

 
In the application phase, the output layer consists of two nodes: one giving the index number of 
the winning node, and one giving a degree of match between the input vector and the prototype 
vector of this node. The degree of match m  is computed as: 
 

 m = 1 −
hp y( )
r L

 

 
  

 
 ,           (1.3) 

 
where r  is the variation range for the training data. 
 
In dGB’s software, the input variables are rescaled so that they all fall in the range from -0.8 to 
0.8 (therefore, r =1.6). The degree of match m  can thus vary from 0 (minimum match) to 1 
(perfect match).  
 
The implication of rescaling is that all input variables will contribute equally to the 
classification result. In our application seismic signals are classified by feeding the UVQ 

 15 



 
Jamada El Oula 

  
 

network amplitudes at discrete sample positions. The samples are selected relative to a 
reference horizon. The rescaling procedure equalises the dynamic range at each sample 
position. It must be realised that some situations may exist where this approach does not yield 
an optimum result. For example, if, for the signals to be classified, a maximum amplitude and a 
zero-crossing always occur at the same sample positions, than the amplitude variations around 
the zero-crossing are relatively amplified.   
 
This concludes the introduction to the integration framework and the type of neural networks 
that are available in dGB’s software. 
 

1.5 References 

Broomhead, D.S., and Lowe, D., 1988. Multivariable functional interpolation and adaptive 
networks, Complex systems, 2:231-355, 1988. 

Carlin, M., 1992. Radial Basis Function Networks and Nonlinear Data Modelling. Proceedings 
of Neuro-Nimes'92, Neural Networks and their Application, EC2, France, 1992, pp.623-
633. 

Doveton, J.H., 1994. Geologic Log Analysis Using Computer Methods. AAPG Computer 
Applications in Geology, No. 2. Association of American Petroleum Geologists. 

Fahlman, 1988. An Empirical Study of Learning Speed in BackPropagation Networks. 
Technical Report CMU-CS-88-162, 1988. LeCun, Y., 1985. Une procedure 
d'apprentissage pour réseau à seauil asymétrique (A learning procedure for asymmetric 
threshold networks). Proceedings of Cognitiva 85, 599-604, Paris. 

Groot, P.F.M. de, 1995. Seismic reservoir characterisation employing factual and simulated 
wells. PhD thesis, Delft University Press. 

Groot, P.F.M. de, Bril, A.H, Floris, F.J.T. and Campbell, A.E., 1996. Monte Carlo simulation 
of wells. Geophysics, Vol. 61, No. 3 (May-June 1996); P.631-638. 

Haykin, S.,  1994. Neural Networks, A Comprehensive Foundation. Macmillan College 
Publishing Company, New York. 

Hertz, J., Krogh, A. and Palmer, R.G., 1991. Introduction to the theory of neural computation, 
Lecture notes volume I. Santa Fe intsitute studies in the sciences of complexity, 
Addison-Wesley Publ. Comp. 

Kavli, T.Ø., 1992. Learning Priciples in Dynamic Control. PhD.Thesis University of Oslo, 
ISBN no. 82-411-0394-8. 

LeCun, Y., 1985. Une procedure d'apprentissage pour réseau à seauil asymétrique (A learning 
procedure for asymmetric threshold networks). Proceedings of Cognitiva 85, 599-604, 
Paris. 

Lee, S. and Kil, R.M., 1988. Multilayer feedforward potential function network.  IEEE 
International Conference on Neural Networks, I-161 - I-171, San Diego, 1988. 

Lee, S. and Kil, R.M.,  1989. Bidirectional Continuous Associator Based On Gaussian Potential 
Function Network. International Joint Conference on Neural Networks, vol.1, 1989, 
pp.45-53. 

Lippmann R.P., 1989. Pattern Classification Using Neural Networks. IEEE Communications 
Magazine, November 1989.  

 16 



 
Jamada El Oula 

  
 

 17 

McCulloch, W.S. and Pitts, W., 1943, A logical calculus of idea's immanent in nervous 
activity. Bulletin of Mathematical Biophysics 5, page 115-133. Reprinted in Anderson, 
J.A. and Rosenfield, E., 1988. Neurocomputing: Foundations of Research, Cambridge 
MIT Press. 

Minsky, M. and Papert, S., 1969. Perceptrons: An Introduction to Computational Geometry. 
MIT Press, Cambridge, MA. 

Moody, J., and Darken, C.J., 1988. Learning with localized receptive fields, in Proceedings of 
the 1988 Connectionist Models Summer School.  pp. 133-143, editors: Touretzky et.al., 
Morgan-Kaufman. 

Parker, D.B., 1985. Learning-Logic, Tech.Rep.TR-47. MIT Center for Computational Research 
in Economic and Management Science, Cambridge, MA. Rosenblatt, F., 1962. 
Principles of NeurodyWintershallics: Perceptrons and the Theory of Brain Mechanisms. 
Washington D.C., Spartan Books. 

Platt, J., 1991. A resource-allocating network for function interpolation. Neural Computation, 
3(2):213-225, 1991. 

Poggio, T. and Girosi, F., 1989. A theory of networks for approximation and learning. 
Technical report, Artificial Intelligence Laboratory, Massachusets Institute of 
Technology, Jul. 1989. 

Powel, M.J.D., 1987. Radial basis functions for multivariable interpolation: A review, in 
Algorithms for Approximation. editors: Mason, J.C., and Cox, M.G., Clarendon Press, 
London. 

Rich, E. and Knight, K., 1991. Artificial Intelligence second edition. McGraw-Hill, Inc. 
Rosenblatt, F., 1962. Principles of NeurodyWintershallics: Perceptrons and the Theory of Brain 

Mechanisms. Washington D.C., Spartan Books. 
Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986. Learning internal representations by 

error propagation, Parallel Distributed Processing. Editors: Rumelhart, D.E., 
McClelland, J.L. and the PDP Research group, 318-362, Cambridge, MA, MIT Press. 

Schmidt, W.F., 1994, Neural Pattern Classifying Systems. PhD. thesis, TU Delft, CIP-DATA 
Koninklijke Bibliotheek, Den Haag, ISBN 90-9006716-7.  

Schultz et.al.,1994. Seismic-guided estimation of log properties, Part 1:  A data-driven 
interpretation methodology. The Leading Edge, May 1994; Part 2: Using artificial neural 
networks for nonlinear attribute calibration. The Leading Edge, June 1994; Part 3: A 
controlled study. The Leading Edge, July 1994. 

Sinvhal A. and Sinvhal H., 1992. Seismic Modelling and Pattern Recognition in Oil 
Exploration. Kluwer Academic Publishers. 

Turing A.M., 1937. On computable numbers, with an application to the Entscheidungsproblem. 
Proc. Lond. Math. Soc. (ser. 2), 42, 230-65; a correction 43, 544-6. 

Werbos, P.J., 1974. Beyond Regression: New Tools for Prediction and Analysis in the 
Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA. 

 


	Appendix I: Geology-Driven Integration (GDI)
	1.1 General
	1.2 Integration framework
	1.3 Simulating wells
	1.4 Artificial neural networks
	1.4.1 General
	1.4.2 Multi-layer perceptrons (MLP)
	1.4.3 Radial Basis Function Neural Networks (RBF)
	1.4.2 Unsupervised Vector Quantiser networks

	1.5 References


