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a b s t r a c t

The seismic interpretation in Maari 3D prospect of the Taranaki basin in New Zealand based on artificial
neural network has brought out gas migration pathways from the source rock through the faulted res-
ervoirs to the seabed. The findings correlate reasonably with the results of Moki-1 well drilled within the
study region. The gas chimneys are analyzed using modern 3D visualization tools by displaying the
chimney probability cube over different vertical seismic sections, horizon slices and time slices
respectively. The training of multi-seismic attributes resulted into 0.4e0.6 normalized RMS error giving
rise to 5.08e10.26% misclassification during the training and testing phases. Several fault intersection
zones (weak zones) within the reservoirs exhibit high probability of gas chimneys. This study acts as an
add-on-tool for understanding the petroleum system and provides preventive clues for mitigating
hazards in future exploitation program.

© 2016 Published by Elsevier B.V.
1. Introduction

Gas chimneys are form of chaotic disordered vertical distur-
bances observed on seismic data, where the reflectors are discon-
tinuous and reflection amplitudes are weaker. Mapping chaotic
reflections from seismic data and gleaning valuable information for
exploration of hydrocarbons is a challenge. Dunbar et al. (1998)
used a phase based velocity modeling approach for imaging gas
clouds. O'Brien et al. (1999) used a detailed velocity modeling
approach for simulating the effect of gas chimney. Engelhardt et al.
(2001) made use of four component seismic data for interpreting
gas chimneys. During the past 20 years, seismic interpretation has
witnessed significant development of new seismic attributes and
their application for imaging and interpreting geological features of
interest (Bahorich and Farmer, 1995; Hardage et al., 1996; Marfurt
et al., 1998, 1999; Tingdahl, 1999; Tingdahl et al., 2001; Roberts,
2001; Tingdahl and de Rooij, 2005; Al-Dossary and Marfurt,
2006; Chopra and Marfurt, 2007; Chen et al., 2008; Farfour et al.,
), kalachandsain@yahoo.com
2015). The use of advanced interpretation techniques based on
different seismic attributes such as similarity, energy, dip variance,
frequency etc., are very sensitive in illuminating the chaotic events
from the surroundings (Brouwer et al., 2008; Connolly and Garcia,
2012). They are commonly supplemented with low similarity, low
amplitude, variable dip wipe-out zone, causing high frequency
attenuation due to scattering of seismic signals (Berndt et al., 2003;
Ligtenberg, 2003; Westbrook et al., 2008; Brouwer et al., 2008;
Petersen et al., 2010; Connolly and Garcia, 2012).

The identification of gas chimneys provides a clue for the exis-
tence of hydrocarbons and helps in understanding the petroleum
system of a region. This also identifies potential over-pressured
zones in mitigating the drilling risks (Heggland, 2004). However,
some authors (Heggland, 1997; Aminzadeh et al., 2002; Connolly
and Garcia, 2012) refer these events as an effective source of
noise that degrades the quality of seismic image. Hence, it has been
a challenge for effective identification and mapping of causative
bodies that may lead to the exploration of hydrocarbons. It is the
seismic attributes that can assuage such challenge. The attributes
such as the root mean square, variance and red-green-blue color
blending are mostly used to study and interpret these chaotic
events. However, seismic interpreters encounter problems in
extracting seismic attributes for outlining the objects of interests, as
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the attributes sometimes cannot discriminate the objects associ-
ated with different origin. To alleviate such discrepancies, Meldahl
et al. (1999) proposed a technique that draws a proper definition of
the targeted feature. The approach is based on computation of
several multi-trace attributes and recombination of extracted at-
tributes into one or two new attributes through artificial neural
network (NN). The present work for the delineation of gas chim-
neys over the Maari field of southern Taranaki basin, offshore New
Zealand, is focused on this philosophy.

Ilg et al. (2012) have identified ~394 gas chimneys within the
Taranaki basin (Fig. 1) based on seismic attribute studies. These
features are found to be more concentrated within the offshore
southern Taranaki basin. Later, Alotaibi (2015) and Wooltorton
(2015) illustrates the gas chimneys within the Maari prospect,
which are related to faults. These works are based on the root mean
square, variance and red-green-blue color blending techniques.
Using one or two attributes for interpreting chaotic events that
represents hydrocarbon (gas) shows may be debatable. In this
study, we use a combination of directive multi-trace attributes (i.e.,
attributes steered in a user driven or data driven direction) to
generate a new attribute through supervised NN. The attributes
that have been used here are similarity, energy, dip variance and
frequency wash-out that can enhance the contrast between the
chaotic events and the background in a robust way. Before training
the network, the attributes are extracted from the dip-steered
seismic data which is prepared from a steering cube that stores
the dip and azimuth information at every sample position of
seismic reflectors. This forms the heart of the entire work flow. It is
to be mentioned that multiple vertical windows are used while
extracting the attributes. The training is then performed on these
Fig. 1. Location of the study area, covering an area of 123.20 km2 in the southern part
of the Taranaki basin. The Maari 3D seismic block is marked by a black square.
extracted attributes at every chimney and non-chimney locations
chosen on seismic data by the interpreter using a fully connected
multi-layer perceptron (MLP) NN. Once the training is found suit-
able based on RMS error between the observation and the predic-
tion, it is applied over the entire seismic data set to classify them
into chimney (high-probability) and non-chimney (low-probabil-
ity) zones, resulting into a 3D probability chimney volume or
chimney cube. The output are then validated with several key pa-
rameters that not only infers the presence of gas chimneys but also
helps in understanding the petroleum system of the region.

2. Geology and tectonics

The Taranaki basin (TB) (Fig. 1) is the only sedimentary basin of
New Zealand, which is known for its enormous hydrocarbon po-
tential (Palmer and Andrews, 1993; King and Thrasher, 1996) with
complex subsurface geology. It covers an approximate area of
100,000 km2 (King and Thrasher, 1996), and is located along the
western coast of North Island, New Zealand and lies over the sub-
duction zone between the Pacific Plate and the Australian Plate. The
basin is a store house for a thick pile (up to 9 km) of sedimentary
sequences of the Cretaceous to Recent time (Reilly et al., 2015). The
eastern part of the basin is bounded by the subsurface Taranaki
Fault and the Patea-Tongaporutu High (Fig. 2) and covered by the
Late Miocene and Pliocene sediments. Kamp et al. (2004) docu-
mented that these sediments possess a lateral continuity with
sediments of the south Wanganui basin. Most of the sedimentary
deposits belong to the southern part of the basin that includes the
famous Maari, Maui and Tui fields. It is reported that these fields
contribute almost 70% of annual oil production (~180 million barrel
of oil equivalent). The western part of the basin imparts its exten-
sion beyond the present day continental shelf thereby merging
with the Northland basin to the north (King and Thrasher, 1996).
However, the northern and southern borders of the basin are poorly
outlined.

The TB comprises of two major structural units i.e. the Western
Stable Platform and the Eastern Mobile Belt (Fig. 2). The Western
Stable Platform did not witness any tectonic activity and continued
to remain relatively quiescent since the Cretaceous (King and
Thrasher, 1996; Higgs et al., 2012). King and Thrasher (1996) and
Higgs et al. (2012) have outlined this stable platform as a pro-
gradational depositional sequence on an unfaulted, sub-horizontal
regionally subsiding sea floor. However, the Eastern Mobile Belt
exhibits a complex geological morphology representing heavy
tectonism leading to the Neogene development. The Cretaceous-
Cenozoic succession of the basin consists of terrestrial, marine
sedimentary and volcanic deposits which lie over the basement of
the Paleozoic-Mesozoic granites, basalts, andesite and meta-
sediments (Fig. 3) (King and Thrasher, 1996; Hart, 2001). The ba-
sin evolved during the Late Cretaceous extensional faulting that
was associatedwith the breakup of Gondwana and formation of the
Tasman Sea and fault bounded grabens and half graben structures.
These structural features were filled by synrift sedimentary de-
posits comprising of interbeded coal measures and sandstone se-
quences that have resulted into the formation of the Pakawau
Group (Fig. 3) (Palmer and Andrews, 1993; King and Thrasher,
1996). Thereafter, the basin underwent a major transgressive
phase overlying the Paleocene and Eocene deposits of post-rift and
late-rift transgressive sedimentary sequences. This transgressive
event over the entire region led to the deposition of terrestrial to
marginal marine sequences of the Kapuni Group (Farewell, Kai-
miro, Mangahewa and McKee Formations). Inactive tectonism and
reduction in clastic sediment supply during the Oligocene period
formed widespread deposition of limestones and calcareous
mudstones of the Ngatoro Group (Otaraoa and Tikorangi



Fig. 2. Tectonic Map of the Taranaki basin overlain with topography-bathymetry map showing several tectonic elements (normal and reverse faults). The Maari 3D seismic block
indicated by a black square is cut by reverse faults (Modified after Reilly et al., 2015).
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Formations) throughout the basin (King et al., 1999; King, 2000).
Transgressive phase reached to its climax in the early Miocene
(Ngatoro Group: Taimana Formation and Wai-iti Group: Manganui
Formation) and regressive phase started from the Mid-Miocene
comprising of the Wai-iti Group (Moki, Mohakatino Formations)
through the Pliocene (Rotokare Group) to the present day situation.
The important hydrocarbon source rock intervals include the
Cretaceous synrift terrestrial coaly facies, the Paleocene organic-
rich marine mudstone and the Eocene terrestrial/estuarine coaly
sequence (King and Thrasher, 1996; Hart, 2001). The Cretaceous-
Paleogene rifting phase and the late Miocene reactivation devel-
oped many potential structural traps within the basin. These sub-
surface structural features contribute to the trapping mechanism
within the basin and contains largest accumulation of hydrocarbon
deposits.

3. The data

This study is accomplished using 3D seismic survey of the Maari
prospect which lies over the southern part of offshore Taranaki
Basin (Fig. 1). The seismic data, acquired in 1999 by the Geo-Prakla
Company, is a 3D time migrated seismic volume covering an area of
~123.20 km2. The data were acquired in 25.00 m � 12.50 m (inl/crl
bin) with 4.0 m sampling interval and 72 foldage. The total record
length of the data is 3.0 s, and the volume comprises 405 inlines
(Line no. 460 to 865) and 970 crosslines (Line no.1070 to 2040). The
seismic data polarity is SEG normal i.e. the increase in acoustic
impedance boundary is reflected as peak or positive amplitude. The
prospect area has been drilled by 7 wells namely Kea-1, Maari-1A,
Maari-2, Maui-4, Moki-1, Moki-2 and MR9P6.

4. Neural network and seismic attributes

4.1. Neural networks

The concept of artificial neural network (ANN) is inspired by the
research of McCulloch and Pitts (1943) that tries to mimic the
behavior of biological neuron (de Groot, 1999; Van der Baan and
Jutten, 2000). The basic principle is to feed a weighted sum of in-
puts into an activation function which is non-linear in nature to



Fig. 3. Litho-stratigraphy map of the Taranaki basin (after, King and Thrasher, 1996).
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rescale the sum. A constant bias (node or threshold) is applied to
this process for maintaining and controlling the connection be-
tween the input and the processor for a decisional output, which is
examined critically. The weight, assigned to each input unit, plays a
pivotal role. The more the weight, the better is the connection
between the input and the processor. If the response output is
found to be different from the expected output, the internal pa-
rameters such as inputs and weights (known as synaptic weights)
are rechecked and rescaled to establish a better match between the
obtained and targeted outputs.

The present study follows a supervised learning mechanism - a
technique in which the NN is trained on the data points selected by
the interpreter in order to classify the training response into two or
more classes (de Groot, 1995; Ligtenberg and Wansink, 2001; de
Groot et al., 2004; Brouwer et al., 2011). This learning process is
carried out through a multi-layered perceptron (MLP) network
(Rosenblatt, 1962), which consists of a large number of inter-
connected processing nodes, organized into input layer, hidden
layer and output layer. The data fed into the MLP network moves
from input layer through hidden layer to the output layer. Basically,
the MLP works on two basic principles: abstraction and general-
ization (de Groot, 1995; Brouwer et al., 2011), where abstraction is
the ability to extract the relevant features from the input and
discard the irrelevant ones. Once trained, the generalization allows
the network to recognize the input that are not part of the training
set.

The training of the network is carried out with a random set of
weights iteratively in such a way that connection weights are
updated and problems such as the local minima are avoided
(Atakulreka and Sutivong, 2007). The iterative training is continued



Fig. 4. ANN Workflow used in the present study.
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till a minimum error between the NN prediction and the actual or
known is obtained. Once this is achieved, the network classifies the
output into different classes. In the present analysis, the output is
chimney-yes and chimney-no. The activation function used in our
MLP network is the sigmoid function, which helps to rescale the
neural output. This function is continuous, monotonically
increasing, differentiable and bounded, and takes the input and
squashes the output in terms of 0s and 1s. 0 refers to chimney-no or
low chimney effect and 1 refers to chimney-yes or high chimney
effect.

The MLP network is robust, can deal with large volume of input
data and quickly extract relevant information from the data (de
Groot, 1995). Such non-linear network has found important appli-
cation in characterization of seismic reservoir, extraction of
geologic features and recognition of patterns (An and Moon, 1993;
Wong et al., 1995; Mohaghegh et al., 1996; Schuelke et al., 1997; de
Groot, 1999; Ligtenberg and Wansink, 2001; Ligtenberg, 2005).

4.2. Seismic attributes

Seismic attributes are defined as the quantities measured,
computed and inferred from the seismic data, and help in
enhancing the geologic feature or quantifying reservoir property of
interest (Chopra and Marfurt, 2007). A set of seismic attributes,
which are useful inputs for training the neuron model, are
described below.

4.2.1. Similarity
Similarity expresses how much two or more segments of

seismic traces u(x, y, t) look alike. If we consider the samples of
trace segments to be the coordinates of vectors in hyperspace, the
similarity is defined as the Euclidean distance between the vectors,
normalized over the vector lengths (Tingdahl, 2003; Tingdahl and
de Groot, 2003; Tingdahl and de Rooij, 2005). Thus, if S is the
similarity between two trace segments at (xA, yA) and (xB, yB),
centered at time t, the Euclidean distance is expressed as:

S ¼ 1� ja� bj
jaj þ jbj (1)

where:

a ¼ ½uðxA; yA; tþ t1ÞuðxA; yA; tþ t1 þ dtÞ uðxA; yA; t
þ t2ÞuðxA; yA; tþ t2 � dtÞ�

b ¼ ½uðxB;yB; tþ t1ÞuðxB; yB; tþ t1 þ dtÞ uðxB; yB; t
þ t2ÞuðxB; yB; tþ t2 � dtÞ�

dt is the sampling interval, t1 and t2 are the relative start and stop
times of the comparison window and u is the seismic amplitude.

The similarity outputs range between 0 and 1, where 0 repre-
sents low similarity and 1 represents high similarity. In the context
of chimney analysis, seismic chimneys are associated with low
similarity values.

When similarity attribute is computed from dip-steering
seismic (Tingdahl, 2003), the output is called dip-steered similar-
ity, which is expressed as (Tingdahl, 2003):

Sdip ¼ 1�

���adip � bdip
������adip

���þ
���bdip

���
(2)
where:

adip ¼ ½uðxA; yA; tA þ t1ÞuðxA; yA; tA þ t1 þ dtÞ uðxA; yA; tA þ t2

� dtÞuðxA; yA; tA þ t2Þ�

bdip ¼ ½uðxB;yB; tB þ t1ÞuðxB; yB; tB þ t1 þ dtÞ uðxB; yB; tB þ t2

� dtÞuðxB;yB; tB þ t2Þ�

tA and tB are the dip-steered times from the position (x, y, t) to the
traces at (xA, yA) and (xB, yB) respectively. The use of dip-steered
similarity delivers an improved chimney classification from the
background.

4.2.2. Energy
The Energy attribute at (x, y, t) is defined as the sum of the

squared amplitudes within a givenwindow (Tingdahl, 2003), and is
given by:

E ¼
Xt2

t¼t1
uðx;y; tþ tÞ2 (3)

where, t1 and t2 are the relative start and stop times of the energy
window.

The chimneys are outlined as low amplitude and low energy
disturbed events.

4.2.3. Dip variance
Seismic attribute that honors the directionality property

(Tingdahl, 2003; Tingdahl and de Rooij, 2005) provides a better
classification scheme to identify features of interpreter's interest. In
the context of seismic chimneys, the inner parts of these features
are outlined with chaotic textures. These zones are represented by
variable dips i.e. the dips varying from sample to sample within
these zones. These behaviors can be efficiently characterized by
measuring statistical variance of dips as (Tingdahl, 2003):



Fig. 5. a: Original pre-stack time migrated seismic section for inline no. 693 fromMaari 3D seismic volume. The signals within the violet, green and pink ovals in the zoomed section
are observed weak. The chimneys (low amplitude, vertically aligned features), indicated by black arrows, are also poorly visible. b: Proper illumination of the seismic image for
inline no. 693 by conditioning the data using DSMF, showing the signal enhancement at places where the image was poor (indicated by ovals and arrows in Fig. 5a). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. (continued).
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varðpxÞ ¼
1

n� 1

Xxs

b¼�xs

Xys

a¼�ys

Xt2
t¼t1�

pxðxþ a; yþ b; tþ tÞ � px
�2 (4)

where, px ¼ ðPxs
b¼�xs

Pys
a¼�ys

Pt2
t¼t1pxðxþ a; yþ b; tþ tÞ

t1 and t2 are the relative start and stop times, and n is the total
number of samples in the sub-cube. xs and ys are the sub-cubes
lateral step-out in x and y directions respectively. Equation (4)
shows the dip variance in the x direction. Similarly, the dip vari-
ance in the y direction varðpyÞ can be calculated. The overall
dip variance is then calculated by averaging the varðpxÞ and varðpyÞ
as:

pvar ¼
varðpxÞ þ var

�
py

�

2
(5)

4.2.4. Frequency wash-out
Higher frequency is attenuated more in the gas chimney

because of scattering of the signal within the gas clouds. Thus, high
frequency wash-out can be used as a good marker for the identi-
fication of gas chimneys.

4.2.5. Simple chimney attribute
The simple chimney attribute acts as a contributory tool for

guiding other attributes (Connolly and Garcia, 2012). This is
analyzed effectively with similarity attribute for testing low similar
chaotic chimney zones.

All these attributes have been extracted from seismic data in the
Fig. 6. DSMF seismic section for inline no. 793 from Maari 3D seismic volume. The section de
colour in this figure legend, the reader is referred to the web version of this article.)
Maari field of the Taranaki basin in three separate time windows:
above, below and on the point of investigation. Most of the time
windows used for attribute extraction have a length of 80 m, which
is based on the fact that chimneys are vertical bodies with a certain
dimension.

5. Methodology

Seismic chimneys are characterized by vertical disruption in the
continuity of seismic reflectors and represented by low amplitude
chaotic zones on seismic sections (Brouwer et al., 2008, 2011).
However, some features such as the faults and mass transport de-
posits are also illuminated by low amplitudes and low similarity
values (Brouwer et al., 2011). A combination of multiple attributes
through a non-linear neural network provides an optimal approach
for better interpreting these disrupted features from seismic data.
(Heggland et al., 1999, 2000; Meldahl et al., 1999, 2001).

5.1. Seismic data conditioning

Noises such as the dispersion, scattering, diffractions etc. mask
signals on seismic sections representing the subsurface. Thus, it has
been routine to preprocess and optimally condition the seismic
data before inferring meaningful geological interpretation. The
workflow for conditioning the data is shown in Fig. 4. It begins with
a process, called dip-steering (Tingdahl, 1999; Tingdahl et al., 2001;
Tingdahl and de Groot, 2003; Qayyum et al., 2015; Jaglan et al.,
2015) that uses local dip and azimuth of seismic events to track
them locally with respect to the trace segments under investiga-
tion. The output of this process is known as the “dip-azimuth
picts chimney anomalies, marked by blue ovals. (For interpretation of the references to



Fig. 7. a: Dip-steered similarity attribute in vertical section for inline no. 793 depicting the chimney anomalies marked by blue ovals associated with low similarity values. b:
Variance dip attribute in vertical seismic section for inline no. 793 from Maari 3D seismic volume. The chimney zones (blue ovals) are associated with high variance dips. c: Energy
attribute for inline no. 793. The chimney zones (orange ovals) are associated with low energy. d: Frequency wash-out attribute for inline no. 793. Note that chaotic chimney zones
(red ovals) are associated with high frequency attenuation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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volume” or “steering cube”. A statistical filter, called the dip-steered
median filter (DSMF), is applied to the seismic data volume (Fig. 5a)
using the pre-processed steering cube, resulting into a smoothed
seismic volume, known as the DSMF seismic volume (Fig. 5b). The
DSMF seismic volume shows the continuity of seismic reflections
and suppression of random noises (Jaglan et al., 2015; Qayyum
et al., 2015), and is taken as input for the next operations.

5.2. Selection of input seismic attributes

Seismic attributes are used to comprehend information about
objects from seismic data (Meldahl et al., 2001). It is essential to
have a prior knowledge on the geometrical characteristics such as
the shape and orientation of the objects that we look for. This helps
in selecting a set of seismic attributes that exhibit the best inter-
pretation of gas chimneys, recognized as vertically aligned objects
(Fig. 6). Seismic attributes such as the similarity (Fig. 7a), dip
variance (Fig. 7b), energy (Fig. 7c) and frequency wash-out (Fig. 7d)
are selected for studying the gas chimney. Other attributes such as
the signal-to-noise ratio and two-way time are also taken into ac-
count. All these attributes are initially tested along few key seismic
lines to demonstrate their ability in demarcating the chimneys
more clearly. Once satisfactory result is achieved, all the attribute
sets are chosen as input for the NN process.



Fig. 8. Example locations of picksets for inline no. 793, which are classified into chimney-yes (green dots) and chimney-no (blue dots) groups. The MLP network learns through
these examples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The MLP network used for this study contains three different layers: input layer,
hidden layer and output layer. Each layer consists of different nodes interconnected
with each other as shown in the figure. The color scale red to pale yellow specifies the
relative contribution or weights of each input node to the classification result. Red
color provides much contribution in training for chimney. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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5.3. Selection of training data

Example or pickset locations are provided to the NN to guide it
how to discriminate the character (found in the input attribute sets)
of chimney from non-chimney zones. Chimney picks (Fig. 8) are
taken at the most obvious locations of vertical hydrocarbon
migration pathways, characterized by low amplitude anomalies
and chaotic zones. Non-chimney picks (Fig. 8) are taken at the lo-
cations without any migration pathways. Around 300 training lo-
cations have been selected in the seismic data volume.

5.4. Training of the NN

The NN learns from these examples, trains itself through the
data and tries to establish a relationship between the input sets
(seismic attributes) and the output (chimney-yes and chimney-no)
(Fig. 9). The training is carried out iteratively and the weights of the
connections are adjusted unless a minimum error between the
predicted network result and the known output is reached. The
training results are visualized on key seismic lines for quality check.
Once satisfied, the NN is applied over the entire seismic volume to
obtain the chimney probability volume. The volume contains
values between 0 and 1, where 0 corresponds to the lowest prob-
ability of chimneys and 1 corresponds to the highest probability of
chimney. The chimney volume is viewed by overlying it on seismic
sections, formation tops and time slices.

5.5. Validation

The chimney validations are carried out as follows:

5.5.1. Geological validation
Geological knowledge from available information is important

in carrying out this study. The tops of different geologic formations,
as observed in the drilled well, are mapped over the seismic
volume. Seismic attributes and chimney probability cube are then
examined for plausible geological features such as faults and their
intersections over these formations with a view to ascertain the
presence of gas seepage and accumulation (Gartrell et al., 2003;



Table 1
A sensitivity chart showing the relative contribution of all the attributes. Color codes are used to indicate maximum and minimum contributions of attributes used for neural
training.

Fig. 10. a: Normalized RMS error between the observed and predicted attribute for the train (red) and test (blue) data sets. b: Misclassification percentage for training and testing
phases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. a: The chimney probability output for inline no.793. High chimney probabilities are indicated by deep yellow color, whereas low probabilities are indicated by blue color. b:
Chimney attribute volume overlain in the vertical seismic section for inline no. 793 and crossline no. 1253, showing the gas chimneys moving upwards from the source rock through
the reservoirs (white arrows) to the seabed (red arrows). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. a: Chimney and similarity attributes, co-rendered at 2500 m time slice that cuts the Pakawau Group. The presence of polygonal faults are clearly observed throughout the
formation. The fault systems are associated with high gas chimneys (black ovals). b: Chimney and similarity attributes, co-rendered at 1660 m time slice that cuts the Kapuni Group.

D. Singh et al. / Journal of Natural Gas Science and Engineering 36 (2016) 339e357350



Fig. 13. a: Chimney and similarity attributes, co-rendered at horizon slice over the Kapuni Formation. Chimney effects (high probability) are observed along the fault zones (low
similarity). High faulting activities along with several weak zones are observed within the formation. The weak zones act as conducive pathways for the gas to seep through them.
Vertical exaggeration used for this visualization is 6.0. b: Chimney and similarity attributes, co-rendered at horizon slice over the Mohakatino Formation. Patchy distributions of gas
chimneys are mostly observed towards NE and SE parts. Fault related chimneys are observed towards NE and NW part of the formation. Fault intersection zones accompanied by
high chimney are highlighted (orange oval). Vertical exaggeration used for this visualization is 6.0. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. a: Chimney and similarity attributes, co-rendered at 560 m time slice that cuts the Mohakatino Formation. Chimneys are distributed in patches (purple arrows). High
probability chimneys (orange arrows) are observed along the faults. Blue ovals in the NE, NW and eastern parts highlighting the fault intersection (violet arrows) are characterized
by high chimney effects. b: Chimney and similarity attributes, co-rendered at 440 m time slice that cuts the Waikiekie Formation. Gas chimneys (violet arrows) are observed in the
central and NE parts of the formation. Faults, observed in the extreme northern part of the formation, are associated with high gas chimney (orange arrows). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. a: Chimney attributes over the horizon slice of the Mohakatino Formation. Random lines MN and OP are drawn perpendicular to these chimney zones to show the cor-
relation with the vertical seismic sections. Vertical migration pathways (orange arrows) show the gas chimneys along the line OP. Whereas, fault related chimneys are observed
along the line MN. b: Random seismic section upto 1.0 s along MN showing the fault. c: Random seismic section upto 1.0 s along OP showing the fault and chimney zone (blue oval).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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O'Brien et al., 2002; Ligtenberg, 2005).

5.5.2. Petrophysical validation
The petrophysical properties from the density (RHOB) and

neutron porosity (NPHI) logs in the Moki-1 well (TEOL, 1984) have
been looked into for correlation with different geologic formations.
The response of the logs and gas shows encountered during drilling
are analyzed to mark the gas related effects.

5.5.3. Soft sediment deformation anomalies
The effects of gas seepage, venting of oil or mobilized sediments

through the seabed are observed in the form of some markers such
as the pockmarks, mud diapirs and mud volcanoes (Løseth et al.,
2009). Observation of these features over the seismic data (sec-
tions, time slices, horizon slices) validates the presence of
chimneys.

Once the network is tested and validated with several key ele-
ments, the 3D chimney cube is used for 2D and 3D displays. Such
type of neural networks can also be used to identify other geologic
features of interest such as the geologic faults, channels, salt bodies
etc. from the seismic data.

6. Analysis and interpretation

The MLP network (Fig. 9) comprises of 15 fully connected nodes,
7, 6 and 2 nodes of which are associated with the input, hidden and



Fig. 16. a: Chimney attributes over the horizon slice of the Waikiekie Formation. Random line QR is drawn perpendicular to the chimney zone to show the correlation with the
vertical seismic section. Vertical migration pathways (orange arrows) show the gas chimneys along the line QR. b: Random seismic section upto 1.0 s along QR showing the faults
and chimney zones (blue oval). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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output layers respectively. The network performs its operation by
randomly splitting the data into train and test sets. 30% of the data
is used for testing duringwhich 48 input vectors are used.Whereas,
70% of data is used for training inwhich 106 input vectors are used.
There is no invalid input vector in both cases. Iterative training and
updating the connectionweights overcome the problems related to
local minima. The relative contribution of all input attributes for
classifying chimneys is shown in Table 1. It is observed that fre-
quency wash-out provides the highest contribution followed by
energy, simple chimney attribute and similarity. We observe that
after 8 iterations, the RMS error for both the trained and tested data
attain the minimum value between 0.4 and 0.6 (Fig. 10a). A mini-
mum misclassification (%) of 5.08e10.26% is obtained during the
training and testing phases (Fig. 10b).

The chimney probability volume obtained from this neural
training is interpreted using several visualization displays like
vertical seismic sections, horizon and time slices and random lines.
The chimney output is displayed in vertical seismic section
(Fig. 11a) that exhibits the extent of active gas leakage from the
source through the reservoirs. This observation is highlighted more
when the chimney output is overlain on the seismic data and is
viewed three dimensionally (Fig. 11b). The chimneys are originated
from the source rock intervals of the Pakawau Group belonging to
the Late Cretaceous period, charging into the Kapuni Group of the
Paleocene to the Eocene period and propagating through the
Miocene reservoirs all the way to the seabed. Co-rendering the
chimney and similarity attributes at 2500 m time slice (Fig. 12a)
that cuts the Pakawau Group shows the existence of gas accumu-
lation. High probability chimneys are represented by deep yellow
color and low probable chimneys are indicated by green to blue
color. This formation is also associated with several polygonal fault
systems which are observed close to the gas zones. Development of
layer bound fault systemswithin this formation provides a pathway
for the gas to be charged into the overlying Kapuni Group. Co-
rendering the chimney and similarity attributes at 1660 m time
slice (Fig. 12b) that cuts the Kapuni Group also reveals the presence
of gas accumulation. Most of the gas deposits are concentrated
along the faults, as are observed on the horizon slice over the
Kapuni Formation (Fig. 13a). The horizon slice prepared by co-
rendering the chimney and similarity attributes over the Mohaka-
tino Formation (Miocene reservoir) exhibits that gas chimneys are
distributed in patches and more pronounced in the NE and SE parts
of the region (Fig. 13b). TheMohakatino Formation is deformed and
highly faulted, characterized by low similarity. However, zones
within these faults are characterized by high chimney values. The
fault zones in the extreme northern, NW and SE parts of the for-
mation are associated with high chimney probability. Fault in-
tersections are observed in the NW, and the zones within these
intersections are characterized by high chimney values. These ob-
servations infer not only the faulting nature of the formation but
also imply that these faults are associated with weak zones that act
as conducive pathways for gas seepage. The time slice (Fig. 14a) at
560 m that cuts the Mohakatino Formation also honors these ob-
servations. Some of the faults in the extreme northern and NWpart
over this time slice intersect with each other, and higher chimneys
are observed at these zones. Chimney patches with higher proba-
bility are observed over the NE and SE parts of the formation.
Similar analysis is also carried over the time slice of 440 m that cuts
the Waikiekie Formation, which exhibit patchy distribution of
chimneys in the SW, SE and NE parts of the formation (Fig. 14b).
Sharp signatures of faults, characterized by low similarity, are
observed over this formation. The faults are also associated with
high chimney patches. However, the faults observed in NW part of
the formation do not show the signature of gas chimney, indicating
that the faults are sealed in the NW part.

To understandmore about the gas shows, as revealed by seismic
attributes, we display seismic sections along random seismic lines,
perpendicular to the trend of the chimney features over the horizon
slice corresponding to the Mohakatino Formation (Fig. 15a). The
random seismic section MN shows the fault related gas migration
through the Mohakatino Formation of the Early Miocene. The
random seismic section OP shows the vertical migration of gas
through this formation, all the way to the seabed. The random
seismic sections along MN and OP are shown in Fig. 15b and c
respectively. Similar analysis is also carried over the Waikiekie
Formation (Fig. 16a). The random seismic section QR over the
Waikiekie Formation of the Late Miocene to Early Pliocene also
exhibits gas migrations all the way to the seabed. The random



Fig. 17. a: Chimney and similarity attributes, co-rendered at 152 m time slice for the seabed. Pockmarks (circular morphology) are indicated by blue dotted ovals, which are
associated with high chimney probability and reveals gas seepage through the seabed. To confirm this observation random line AB is drawn perpendicular to these pockmarks. b:
Random seismic section upto 0.5 s along AB showing the chimney attribute. Vertical gas migrations (black arrows) are observed from the source to the seabed through the near-
seabed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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seismic section along QR is shown in Fig. 16b. We display the time
slice at 152 m over the seabed, overlain with the co-rendering of
chimney and similarity attributes, with a view to observe the
signature of gas migration (Fig. 17a). The pockmarks (circular
appearance), observed over the seabed, are associated with low
similarity and high chimney attributes. These features are nothing
but the seafloor depressions caused by the escape of fluids and
gases through them (Petersen et al., 2010). To observe the signature
at depths, we look into the random seismic section along line AB
passing through these circular features. The random seismic sec-
tion (Fig. 17b) shows the gas escape from the shallow reservoirs all
the way to the seabed.

Presence of gas has been established by drilling few wells at
selected sites in the study region (TEOL, 1984). The location of
Moki-1 well is shown in the 3D view of chimney overlain with
seismic sections (Fig. 11b), where gas shows are encountered at
depths ranging from 1100 m below kelly bush (mbkb) to
2600 mbkb (Fig. 18). These are also indicated by the decrease in
observed density and porosity logs. The well was drilled upto a
Fig. 18. The density and neutron porosity logs at Well Moki-1 passing through the study are
gas shows, which were encountered in the well at depths, marked by circular symbols. (For
the web version of this article.)
depth of 2620 mbkb, and we don't have any information below this
depth. We also don't have any well information above 650 mbkb.
Our findings based on seismic attribute studies are corroborated
with the drilling results, and provides further information on the
prospective zones of gas occurrences in the study region.

The entire study has been summarized in Fig. 19, which shows
that the gas clouds originating from the Pakawau Group (source
rock) of the Late Cretaceous age, propagate through the overlying
Kapuni Group of the Eocene and Wai-iti Group (Mohakatino and
Waikiekie Formations) of the Miocene reservoirs to the seabed.
Frequency attenuation and signal deterioration between the deep
and shallow reservoirs reveal that gas chimneys extend through the
formation to the seabed, which is indicated by pockmarks or wipe-
out zones. Thus, the present workflow helps in understanding the
petroleum system of a region, and provides a measure in mitigating
hazards, caused by overpressure due to the presence of gas.

We have used the MLP network to classify chimney and non-
chimney zones from seismic data. This is a supervised learning
process, where the network learns by example sets (i.e. chimney
a. The decreasing trend of both logs (green dotted ovals) indicate the depth interval of
interpretation of the references to colour in this figure legend, the reader is referred to



Fig. 19. 3D volumetric visualization of gas clouds or chimney showing its rise from the thermally mature source rock, propagating through the Eocene (Kapuni Formation) and
Miocene (Mohakatino Formation) reservoirs all the way to the seabed.
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sets in our case) and uses a classification scheme for identifying
features of interest. The advantages of using ANN through MLP is
that the technique uses the interpreter's ability, insight and
knowledge to prepare example sets and allows the network to
learn by these examples. However, if we tend to perform a
pattern analysis (i.e. use of NN to cluster the available data), then
it is an unsupervised learning technique that may not solve the
problem.

7. Conclusions

We have developed a new workflow based on neural network
for the computation of new attribute(s) from a set of other attri-
butes, which has been used in interpreting seismic data for
discriminating geologic features from gas chimneys. The applica-
tion of the approach to timemigrated 3D seismic data inMaari field
of the highly structured and deformed Taranaki basin has delin-
eated gas zone that has been validated from thewell data. Themain
conclusion from this study is the delineation of gas clouds that has
originated from the Late Cretaceous source rocks followed by
migration into the Eocene and Miocene sandstone reservoirs. The
study also shows that gas has seeped through the overlying Plio-
cene to recent formations, the imprints of which are observed as
pockmarks on the seabed. This workflow can also be used for
interpreting plausible geological features such as the faults, mud
diapirs, mud volcanoes, salt bodies, slum deposits, debris flows etc.
from seismic data. The technique can be extended in characterizing
reservoir properties such as the porosity, permeability, saturation
etc.
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