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Unravelling the petroleum system by enhancing fluid migration
paths in seismic data using a neural network based pattern

recognition technique
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ABSTRACT

Understanding the hydrocarbon migration system in the sub-surface is a key aspect of oil and gas exploration. Itis well
known that conventional 3D seismic data contains information about hydrocarbon accumulations. Less known is the

fact that 3D seismic data also contains information about hydrocarbon migration paths in the form of vertical noise

trails. A method has been developed to highlight vertical noise trails in seismic data semi-automatically, using assem-
blies of directive multi-trace seismic attributes and neural network technology. The results of this detection method
yield valuable information about the origin of hydrocarbons, about migration paths from source to prospect and about
leakage or spillage from these prospects to shallow gas pockets or to the sea bed. Besides, the results reveal the sealing

quality of faults, provide information on overpressure and whether prospects are charged or not. All these aspects are
useful information for basin modelling studies and for an increased understanding of the petroleum system.
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INTRODUCTION

Unravelling the petroleum system is the key to exploration
success. Recently, Statoil explorationists introduced seismic
chimney interpretation as a new tool to help unravel the pet-
roleum system (Heggland 1998). Large fluid migration struc-
tures are often visible on seismic data, but they are quite
difficult to map manually. More subtle features are often
overlooked. The newly developed method for detecting fluid
migration paths in seismic data uses a combination of seismic
attributes, neural network technology and the interpreters’
insight for the identification and enhancement of fluid migra-
tion structures (Meldahl ez al. 1998; Meldahl ez al. 2001).
The method is used in conjunction with other geological and
geophysical data, such as well logs, pressure data and other
relevant information to confirm the observed structures.

METHOD

The workflow for the enhancement of fluid migration paths
in seismic data starts with thorough analysis of all available
data to gain a better understanding of the local and regional
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geology. Special attention is paid to seismic data to recognise
features in the data that indicate present and/or past fluid
migration. These include gas chimneys, pockmarks, mud vol-
canoes, carbonate build-ups that are related to hydrocarbon
migration, shallow gas pockets and prospects (Hovland &
Judd 1988; O’Brien & Woods 1995). Figure 1(A) is an exam-
ple of a leaking anticlinal structure, above which intense fluid
migration is observable just above its crest, breaking through
hard rock formations and reaching shallow sediments. Fluid
migration occurs predominantly along a large-scale fault.
The next step in the detection workflow is the selection of
example locations representing fluid migration paths that will
be used for the training phase of the neural network. These
locations are manually picked by an interpreter (white picks,
Fig. 1B). Only areas are selected that definitely indicate fluid
migration, confirmed by other characteristics such as shallow
gas pockets (palaco-) mud volcanoes, and so on. In addition,
example locations are selected that do not represent fluid
migration (black picks, Fig. 1B). At these picked locations
various seismic attributes are extracted. The parameters of
these attributes are evaluated to find the optimal settings
for enhancing fluid migration path characteristics. Typically,
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fluid migration paths exhibit a low energy and noisy (near-)
vertical chaotic seismic response. Seismic attributes that pick
up these characteristics are a/o: Energy, Similarity (Coher-
ency-type of attribute), 3D-Curvature, Frequency, various
dip/azimuth calculations. The final set of attributes with
associated class indication serves as training set for the neural
network, which will learn to distinguish between fluid migra-
tion paths and nonfluid features.

Artificial neural networks belong to a group of mathemati-
cal algorithms which in general are inspired by the ‘brain
metaphor’, meaning that they try to emulate the internal pro-
cesses of the human brain. They usually consist of many pro-
cessing nodes that are connected by weights. Neural
networks are used in many industries today to solve a range
of problems, including pattern recognition, regression analy-
sis and data clustering. In the oil industry, neural networks
are now routinely used in seismic reservoir characterisation
and seismic pattern analysis (Wong ez al. 1995; Mohaghegh
et al. 1996) and in general for solving complicated data

problems. In our application, a fully connected multi-layer
perceptron (MLP) neural network is used (Bishop 1995).
MLPs are the most common type of neural network and
are sometimes (mistakenly) referred to as ‘back-propagation’
networks after the popular training algorithm used in the
learning process. MLPs are supervised neural networks, i.e.
they learn by example. In this situation, the large database
containing information on the seismic character of the fluid
migration structures, expressed by various seismic attributes,
is fed to the neural network. The neural network will train
itself by scanning through the data many times, trying to
recognise patterns in the data. At the end of the neural net-
work training phase, the network has captured the relation-
ship between the input (the seismic attributes) and the
desired output (to which class it belongs).

Application of the trained neural network yields a so-
called chimney probability cube, i.e. a volume with values
between approximately zero and one. High values in this
cube represent a high ‘probability’ of belonging to the class

Fig. 1. Example of the fluid migration detection workflow: (A) the original seismic data, North Sea, (B) the selection of train locations representing fluid migration
(white) and nonfluid migration (black) and (C) fluid migration path detection result after the application of the trained neural network. Cross-section 17 km, depth
1900 msec.
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of seismic chimneys (or fluid migration paths). Figure 1(C)
shows the result after application of the trained neural net-
work to the seismic data, only enhancing the intense leakage
along the faults above the anticlinal structure. In addition,
the neural network has picked up the polygonal faults at
shallow level that may have formed by dewatering in under-
compacted clays.

All seismic attributes that go into the neural network con-
tribute to the final outcome. A similar result cannot be
achieved using single attributes. For example, based on the
similarity attribute only, chimneys and nonchimneys cannot
be separated (Fig.2B), because a large overlap exists in the
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response (Fig. 3A). Figure2(B) illustrates that all noisy
features in the data are picked up when using the similarity
attribute only, such as the low acoustic impedance zones at
shallow level that are not related to the presence of hydrocar-
bon migration paths. The neural network result is clearly
less noisy (Fig. 3B). Moreover, all migration structures with
similar attribute response as the training set are detected.
Figure 2(C) shows a large gas chimney, reaching the seabed
and creating a mud volcano as surface expression. This fea-
ture was sampled to serve as training set. In the resulting
chimney ‘probability’ cube, smaller gas chimneys running
parallel to this large gas chimney are clearly visible. These

(B)

Fig. 2. Comparison between similarity and neural network technology for the enhancement of fluid migration paths on seismic data. (A) Original seismic data,
West Africa, (B) single attribute analysis ‘similarity’, and (C) neural network detection method. Cross-section 13 km, distance from seabed to base of image

approximately 4000 msec.
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smaller features seem to charge shallow gas pockets, which
constitute a geo-hazard.

INTERPRETATION OF RESULTS

The detection method provides additional information on
fluid migration in the sub-surface and gives a better insight
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Fig.3. (A) Similarity values for positive (fluid migration) and negative
(nonfluid migration) picks (based on data in Fig. 2), showing impossibility of
signal separation, in contrast to neural network technology (B) in which clear
separation between fluid migration paths and other noise is visible.

in all aspects of the petroleum system in basins, ranging from
the origin of hydrocarbons, migration paths, sealing quality
of faults to indications on charge of and leakage from
prospects, as well as indications for overpressure and geo-
hazards.

It should be realised that the described detection method
in essence is a pattern recognition technique. It facilitates the
interpretation of seismic features that exhibit a similar
response as the response in the training set for the neural net-
work. Whether or not high-valued events in the chimney
probability cube are indeed reflecting fluid migration paths
remains a question of interpretation. Vertical noise trails
caused by acquisition and processing artefacts and seismic
merge zones often show up in chimney cubes and must not
be confused with real fluid migration paths. The interpreta-
tion centres on event recognition and spatial relationships
between different types of seismic events (e.g. faults, anoma-
lies) and other sources of information, such as well informa-
tion, pressure regime, basin models and structure maps.

Hydrocarbon generation

The described fluid migration detection method highlights
where hydrocarbons originate by enhancing fluid activity in
source rocks that are assumed to be related to active or past
hydrocarbon expulsion. A recent study revealed very local
activity in the source rock that could be correlated with the
exact outlines of the known hydrocarbon maturation area
(Fig. 4; Ligtenberg & Thomsen 2003). The information con-
firmed the outline of the modelled maturation cells and
pointed in the direction of a possible second kitchen that
was not recognised before. Further investigations are being
carried out to confirm the observations with respect to active
hydrocarbon expulsion. The detected fluid activity in the
source rocks can confirm the observations that are made in
the basin model, which is normally a problem in such studies.
It can also provide indications that updates are required for
the various elements in the model and for their hydraulic
parameters (Ligtenberg & Thomsen 2003).

Chimneys

Fluid migration paths often appear as chimneys. Chimneys
are vertical zones of fluid flux. They are related to variations
in pressure systems by which fluids migrate to shallower levels
(water or hydrocarbons). When these chimneys reach the
seabed, mud volcanoes or pockmarks are formed, depending
on the intensity of fluid flux and pressure.

Large-scale chimneys observable in seismic data as shown
in Fig. 5 are most often gas chimneys, because gas is the only
fluid that is able to break through the capillary pressures of
overlying sediments. Oil and water generally use permeable
formations, faults and fractures to migrate. Although its loca-
tion is quite obvious, the exact outline of such a large-scale
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Fig. 4. Fluid migration detection result on seismic
data, North Sea, enhancing fluid activity in source
rock (indicated by arrow) that is assumed to be
related to hydrocarbon expulsion, along other fluid
migration features. Cross-section 13.7 km, depth
1800 msec.

Fig.5. Example of large-scale gas chimneys in
seismic data, West Africa (A), and the neural
network fluid path detection result (B). Cross-
section 7.5km, distance from seabed to base of
image approximately 4000 msec.

chimney is quite difficult to determine. Besides, small-scale
vertical fluid migration features are most often not directly
observable in seismic data and are often overlooked. The
chimney detection method is capable of picking up these fea-
tures that are hardly visible, and it increases the contrast
between the chimney and other data by which the outlines
of chimneys are better recognisable (Figs 1, 2 and 7).

The relation between closure, seal strength and buoyancy
provides an important control on the amount of oil and gas
present in reservoirs, as well as its hydrocarbon type in multi-
phase petroleum systems (Sales 1997). Important in this type
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of analysis is the knowledge of the local and regional geology
for correct interpretations. Chimney detection provides
important information on the quality of seals and charge
and thus fills the information gaps that exist on charge, seal
and leakage, which are all important aspects of determining
the quality of prospects.

Faults

Seepage-related features such as carbonate build-ups and
pockmarks in the vicinity of faults indicate present or past fluid
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Fig. 6. Image of the seabed (West Africa), showing pockmarks along fault
trends, indicative for fluid migration along these faults. Approximately
2.8 x 6.6km.

migration along the faults (Fig. 6; Hovland & Judd 1988).
Fluid migration path analysis can also assist in the evaluation
of the sealing quality of faults (Ligtenberg 2003). In many
case studies, it is observed that different fault systems exhibit

Fig. 8. Time slice through a Faultcube (West Africa), with an overlay of fluid
migration detection results in yellow, indicating sealing and leaking fault
segments. Approximately 4.5 x 6.3 km.

different signatures in seismic chimney cubes. Some faults are
not visible at all. For others only segments of the faults are
picked up. These faults without detected fluid migration
are assumed to be sealing or having only low-fluid flux.

Fig. 7. Seismic line (North Sea) with overlay of
fluid migration detection. Arrow A indicates faults
with high-fluid flux, in contrast to the faults
indicated by arrow B without or only minor fluid
flux. Cross-section 20 km, depth 3450 msec.
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Figure 7 contains a seismic line with an overlay of the fluid
migration detection and shows active fluid migration along
the large-scale faults on the left, with shallow gas zones in
the clastic formation above. In contrast, the faults that are
present in the central parts show no fluid migration structures
and are assumed to be sealing or having low-fluid flux only.
Figure 8 is an example from West Africa and shows a time-
slice through a fault cube with an overlay from the chimney
cube. This type of visualisation quickly enhances which faults
or fault segments are leaking and which parts are sealing. In
this case it illustrates that only segments of the larger faults
appear to act as fluid migration paths. This segmentation in
leakage intensity along faults may be related to variations in
lithology along the fault or to variations in the pressure
regime. It should be emphasised that all observations in fluid
migration detection should be studied in conjunction with all
other data available, such as well logs, reservoir information,
pressure data and basin modelling results to confirm the
observations.

CONCLUSIONS

Seismic fluid migration path detection has proven to be a use-
ful supplementary tool for studying petroleum systems. The
method may enhance areas of hydrocarbon expulsion, assist
in evaluating the sealing quality of faults and can provide
information on charge, leakage and spillage from reservoirs.
In summary, it provides better insight in all elements of the
petroleum system with respect to fluid flow.
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