
MONTE CARLO STATISTICS; SIMULATING CORRELATED MULTI-
VARIATE STOCHASTIC VARIABLES 

 

The following mathematical description is used in a simulation algorithm aimed at 
simulating wells, i.e. 1D-stratigraphic profiles with attached physical properties. In the 
algorithm, wells are constructed from so-called integration framework entities. These entities 
are grouped at three different scale levels. It is considered important that geological 
knowledge controls the selection of framework entities and that unrealistic realisations of 
variables can be redrawn. This implies that wells must be constructed one-by-one, entity-by-
entity and variable-by-variable.  
 
Variables in a computer are simulated using a (pseudo-) random number generator. When 
random variables are correlated, it is not simple, however, to simulate random draws using 
such a (pseudo-) random number generator.  This is especially true when the variables must 
be drawn one-by-one, as in our application. The realisations of already drawn variables will 
in that case influence the realisation of the variable to be drawn. For example, let us assume 
that a positive correlation exist between the thicknesses of two layers. When for the first 
layer a small thickness is drawn, then also for the second layer a small thickness must be 
drawn.  In the case of normally distributed random variables, it is possible to draw the 
variables consecutively from the marginal distributions. Each time a variable is to be drawn, 
its marginal distribution must first be updated for the already drawn variables to which it is 
correlated.  
 
In the following discussion X  is a  stochastic vector. In our algorithm, X  comprises all 
stochastic variables required for the simulation. A component of X  is denoted by Xi . 
Examples of components are sonic, density, thickness and user-defined variables attached to 
framework entities. Each component Xi  is assumed to be normally distributed with 

expectation µi  and variance , symbolically written as: . The vector of 

expectation will be denoted 

σi
2 Xi ~ N ( σi

2 )µi ,
µ . The components are assumed to be correlated. The 

covariance between components i  and j  is indicated by σij . Note, that the covariance 

between component i  and itself, σii  equals . The matrix of covariances will be denoted 

as Σ . When the covariance 

σi
2

σij  is normalised with the standard deviations σi  and σ j , we 

obtain the correlation coefficient ρij , symbolically written as: ρij =
σij

(σi * σ j ). The 

matrix of correlation coefficients will be denoted by C . Sets of components can be grouped 

into subvectors of X  denoted by X (i), An example of a subvector X (i)  is that part of 
stochastic vector X  comprising correlated thicknesses of a set of layers. The theorems given 
hereafter apply to the general case of drawing entire subvectors. However, for design 
reasons, the variables are, drawn one-by-one, in the final implementation of the algorithm. In 

other words the subvector X (i) to be drawn has only one component. This is illustrated by 
the example at the end of this Appendix. 
 



We require two theorems for our algorithm to work. Theorem 1.1 is used for updating the 
expectation and covariance matrix of a variable to be drawn, given some already drawn 
correlated variables (Mardia, 1979). This theorem requires the covariance matrix to be 
specified completely. In general, the user will not be in a position to specify all coefficients. 
Therefore, the unspecified correlation coefficients must be approximated first. This is 
accomplished with Theorem 1.2 (Meeuwissen et.al., 1994).  
 
In the following discussion, first the two theorems are given, followed by an illustration of 
their use with an example. 
 



Theorem 1.1 
 

First we introduce some notation. Let X  be a n-dimensional stochastic vector which is 
partitioned as follows: 
 

 X =
X (1)

X (2)

 

 
 

 

 
 ,         (1.1) 

 
with expectation Ε[X]  equal to µ : 

 

 µ = Ε[X] =
µ (1)

µ (2)

 

 
 

 

 
 ,      (1.2) 

 
and a positive definite covariance matrix  Cov( X)  given by: 
 

 Σ = Cov(X ) =
Σ11 Σ12

Σ 21 Σ22

 
 
 

 
 
 .     (1.3) 

 
Suppose X  is multivariate normally distributed with expectation µ  and covariance 

matrix Σ , which can be symbolically written as: 
 

 X ~ MVN µ ,Σ( ).       (1.4) 

 
Here  denotes 'is distributed as' and ~ MVN  indicates multivariate normally 

distributed. Then the conditional distribution of X (1) given a realisation x(2) of X (2) 
is multivariate normally distributed with expectation: 
 

 ˆ µ (1) = µ (1) + Σ12 Σ22
−1(x(2) − µ (2) ) ,   (1.5) 

 

where ˆ µ (1)
 is the updated expectation. The updated covariance matrix Σ  is given 

by: 

ˆ 
11

 

 .     (1.6) ˆ Σ 11 = Σ11 − Σ12Σ22
−1Σ 21

 
 
Theorem 1.2 
 

Suppose X1, X2  and X3 are correlated random variables which satisfy: 
 
 E[X1 X2 = x2 ] is linear in ,    (1.7) x2
 
 and 



 
 E[X1 X3 = x3 ]  is linear in .    (1.8) x3
 
Then, given the correlation  coefficients ρ12  between the pairs X1 and X2   and ρ13 
between X1 and X3, the correlation coefficient  ρ23 is given by: 
 
 ρ23 = ρ12ρ13.       (1.9) 
 
The conditions in the theorem imply, say for X1, X2 , that given a realisation  of 
variable 

x2
X2 , the expectation of X1 shifts linearly towards . For normal 

distributions this is always satisfied, as can be seen from theorem 1.1, equation (1.5). 
x2

 
Although this theorem applies to three variables with one missing correlation coefficient 
only, we are going to use it also, without strict theoretical justification, for more than three 
variables where several correlation coefficients may be missing. We must note here, that, for 
more then three correlated variables, the positive definiteness of the covariance matrix may 
be violated by this procedure. In practice we have seen this happen only in some rare cases. 
 
We will illustrate the use of these theorems with the following example. Suppose the 
correlation matrix has been specified for five variables as follows: 
 

 C =

1 0 0 0 0

0 1 * 0.8 *

0 * 1 * 0.6

0 0.8 * 1 0.4

0 * 0.6 0.4 1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

.    (1.10) 

 
 
In this particular example, ρ24  , ρ35  and ρ45  are known coefficients and ρ34 , ρ25  and 
ρ23  are unknown, which is indicated in the matrix by the * symbol. Using 1.9 we can 
determine two of the unspecified correlation coefficients.  
 
 ρ34 = ρ35ρ54 = 0. 24,      (1.11) 
 
and  
 
 ρ25 = ρ24ρ45 = 0.32.      (1.12) 
 
However, ρ23 cannot be determined by combination of two of the given correlation 
coefficients. In a second step, we can approximate it using the previously determined 
correlation coefficients: 
 
 ρ23 = ρ24ρ43,       (1.13) 
 
which can be expanded using 1.11 to: 



  
 ρ23 = ρ24ρ35ρ54 = 0.192 .     (1.14) 
 
Note, that we could also have used: 
 
 ρ23 = ρ25ρ53 = ρ24ρ45ρ53 .     (1.15) 
 
In this particular case, the same value for ρ23 will be obtained for (1.14) and (1.15). In 
general, however the approximation is not unique. If several combinations are possible, in 
which the number of initially specified correlation coefficients differs, then a selection is 
made from the combinations with the least number of initial coefficients. From these we, 
arbitrarily choose one of the possible combinations. Thus, if in a different example, ρ23, 
ρ34, ρ35, ρ45 would have been specified, then we can obtain ρ25, either from: 
 
 ρ25 = ρ23ρ35,       (1.16) 
 
or, from: 
 
 ρ25 = ρ23ρ34ρ45 .       (1.17) 
 
The former expression is favoured because it contains less specified correlation coefficients.  
 
With respect to the approximate nature of the procedure, we emphasise that after multiplying 
correlation coefficients, the resulting number comes closer and closer to zero. Therefore, the 
effect of the resulting approximation of the correlation coefficient decreases rapidly. Hence, 
we argue that making an error in the approximation has little effect when many terms are 
involved. 
 
After application of the above procedure, the correlation matrix of (1.10) can be 
approximated by: 
  

 ˜ C =

1 0 0 0 0

0 1 0.192 0.8 0.32

0 0.192 1 0.24 0.6

0 0.8 0.24 1 0.4

0 0.32 0.6 0.4 1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

.   (1.18) 

 
We can now draw samples for all variables. Suppose we would like to draw them in the order 
X3, X5, X1, X2 , X4 . When selecting X3, no other has been drawn, so we can just draw it 

from its marginal probability density function . Now X3 ~ N (µ3,σ3
2 ) X5 must be drawn, 

conditioned on the  value. Using theorem 1.1, we find: x3
 

 ,    (1.19) ˆ µ 5 = µ5 + σ35 (σ3
2 )−1(x3 − µ3 )

 



and 
 

 ,     (1.20) ˆ σ 5
2 = σ5

2 − σ35 (σ3
2 )−1σ53

 
where 
 
 σ35 = ρ35σ3σ5 ,       (1.21) 
 

is the covariance between X3 and X5. Now X5 can be drawn from . N ( ˆ µ 5 , ˆ σ 5
2 )

 
Now X1 is to be drawn. Since it is independent of X2 , X3, X4  and X5 it can be drawn 

from its marginal distribution . Finally, for N (µ1,σ1
2 ) X2  and X4  we use: 

 

 ˆ µ 2 = µ 2 + σ23σ25[ ] σ3
2 σ35

σ35 σ5
2

 

 
 
 

 

 
 
 

−1
x3 − µ3

x5 − µ5

 
  

 
  , (1.22) 

 

 ˆ σ 2
2 = σ2

2 − σ23σ25[ ] σ3
2 σ35

σ35 σ5
2

 

 
 
 

 

 
 
 

−1
σ23

σ 25

 
  

 
  ,  (1.23) 

 
and  
 

 ˆ µ 4 = µ4 + σ24σ34σ54[ ]
σ2

2 σ23 σ25

σ23 σ3
2 σ35

σ25 σ35 σ5
2

 

 

 
 
 

 

 

 
 
 

−1

x2 − µ2

x3 − µ3

x5 − µ5

 

 

 
 
 

 

 

 
 
 

,   

            
        (1.24) 
 
 

 ˆ σ 4
2 = σ4

2 − σ24σ34σ54[ ]
σ2

2 σ23 σ25

σ23 σ3
2 σ35

σ25 σ35 σ5
2

 

 

 
 
 

 

 

 
 
 

−1
σ24

σ34

σ54

 

 

 
 
 

 

 

 
 
 

,   

            
        (1.25) 
 
respectively. 
 
This allows us to draw the variables one by one in any order. Also, we can redraw any one of 
the variables when needed, and condition on the latest drawn value for each of the correlated 
variables.  
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