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Chapter 4

' NEURAL NETWORK EXPERIMENTS
ON SYNTHETIC SEISMIC DATA

P.F.M. de Groot'

~generated with a rule-based Monte Carlo simulation algorithm which is
pable of simulating realistic one-dimensional (1D) stratigraphic profiles
‘with attached physical properties (de Groot, 1995). The acoustic properties of ':'
ﬂiesc ‘pseudo-wells’ are used to generate synthetic seismograms. The
‘simulated data contains information on stratigraphic entitics at different scale
levels, attached physical propertics and related seismic signals. Neural
‘networks are trained on different datasets representing different geological
settings to establish relationships between seismic response and underlying
“well properties. The influence of architecture and type of activation functions

~on network performance are examined for different paradigms.

;ihput and hidden layer and the type of activation function. is varied for multi-
layer perceptron (MLP) and radial basis functions (RBF) networks. After each

In the following scction the network paradigms and activation funtions used
in the experiments are decribed. This is followed by a description of the initial
* geological model. The cxperiments are presented next, followed by a
discussion of the results and the conclusions.

ro0t-Bril Earth Sciences BV, Boulevard 1945 nr. 24, 7511 AE Enschede, The Netherands.
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4.1 NETWORK PARADIGMS AND
ACTIVATION FUNCTIONS

4.1.1 Multi-Layer Perceptrons

The MLP networks in this article are fully connected three- or four-layer networ
with different types of activation functions used in the nodes of the hidden layer. F
a discussion on MLP’s and the so-called ‘back-propagation’ learning algorithm §
c.g. Werbos (1974), LeCun (1985), Parker (1985) Rumelhart et.al. (1986) ¢
Fahlman (1988). We will now describe the activation functions used in this article

The mathematical expression of the perceptron (Rosenblatt, 1962) can be
as an activation function A applied to a weighting function W, defined as:

L
W(y)= Zwpy;. (4.1)
i=0
I
-l-
where: .
Y is the ncural network input vector writien as y; with i=1,...,L8

weighting vector W; with [ = 1,.

The activation function of the classical perceptron (Fig. 4.1a) can now be wri
in the following form:

1 W>0
A(W) = N (4.2)

In MLP's the binary activation function is often replaced by a conun'
function. The most widely used activation function is the sigmoid function ( (F
4.1b). This function has the following form:

2
A(W)= - 1. 4.3
Ll 1+ exp(—W) e

Other activation functions used in this article are the linear, ramp and tang
hyperbolic functions. The linear function (Fig. 4.1¢) is defined as:

AW)=W. (4.4)
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) Perceptron b) Sigmoid
: P A(R) -

95

») Tangent hyperbolic
A(R) c £ Yp

. 4.1 Different activation functions for MLP networks. The
Ramp, Sigmoid and Tangent hyperbolic functions have
pen used in this article.

"..‘. (Fig. 4.1d) is given by:

-1 W< -1
=W -1<W«<I. {4.5)
1 W>1

o exp(W) — exp(-W)

s (4.6)
exp(W)+ exp(—W)




96 Part | = Expioration: Neural Networks

Two other activation functions are used in this article: the prime-sigmoid.
prime-tangent hyperbolic. These functions have the same mathematical expressi
as equations (4.3) and (4.6), respectively. The training algorithm treats the |
types of functions differently. For the sigmoid and tangent hyperbolic functions,
derivative is used to update the weighting vector (Rich and Knight, 1991). For
prime-sigmoid and prime-tangent hyperbolic functions an offset is added 0
absolute value of the derivative. This is done exclusively to avoid saturg
problems during learning, where saturation means that continued learning does
lead to improved network performance. This modified procedure is used to update
weighting vector.

4.1.2 Radial Basis Function Neural Networks

Radial basis functions have been used for data modelling (curve fitting) by m
rescarchers, ¢.g. Powell (1987) and Poggio and Girossi (1989). Recently th
functions have been put in a neural network paradigm in what is called Radial B
Function (RBF) Neural Networks (Broomhead and Lowe (1988), Moody and D
(1988), Lec and Kil (1988), Platt (1991)). Schultz et.al. (1994) applied |
networks in a seismic reservoir characterisation study.

/

Y o,
\ @ g
Input Hidden Output
layer layer layer

Fig. 4.2 Schematic representation of a Radial Basis Function

network for the case of a single input variable, two basis functions and
one output variable.

RBF networks have the same feed-forward layered architecture as MLP ety
but the weighting function W and the activation function A are different.
RBF networks, there are only weights between output layer and hidden layer
4.2). Each node in the hidden layer has a unique function, called the basis [
For the simple network of Fig. 4.2 with a single input, single output and two|
functions, the output is given by the sum of the two basis functio S, ¢
multiplied with its own weighting factor. In principle, any type of function g
used to act as basis function. For example, spline functions are used (Kavli, 1§
but the identification RBF network, applies only if radial basis functions are 186
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functions give local support to data points, The output of the hidden
when the input is near the centroid of the node, and then falls of
ally as the Euclidean distance between input and the centroid of a node
4.3). The consequence of this behaviour is that RBF networks are
erpolation, but not good for data extrapolation.

ent radial basis functions are in use, with the Gaussian function (Fig.
e most widely used. If the radial basis centre R is defined as:

Ly —.)?
2___()', ',L;’) ; 4.7)
= (0}

2

-

A(R) = exp| —— |. (4.8)
)= exp 5

tion of the activation function A(R) with a weighting factor W then
ut 0 (Fig. 4.2).

;dcly used RBF function is the so-called Inverse Multi-Quadratic
QE, Fig. 4.3b), defined as:

A(R) = —. (4.9)

n empirically determined smoothing factor. In this article a value of 0.5 has

at the widths in RBF functions are specified independently from each input
1, making the functions clliptic rather than spherical. Note as well, that
ctivation functions for MLP's no bias is included in the RBF functions.

locations are typically determined by randomly selecting training examples
set of training data. The smoothing parameters and the number of nodes
ally adjusted empirically during training. RBF neural networks and MLP's
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have been compared by many workers. Kavli (1992) reported consistently bet
performance of RBF networks in five independent experiments. Another importa
aspect when comparing RBF networks and MLP's is the training speed. RI
networks can be trained within a fraction of the time that is required for tra n
MLP's. RBF networks, however, generally require more nodes to obtain sim
performances.

a) Gaussian

b) IMQE
AR) A(R)

Fig. 4.3 Activation functions used in this article for RBF
networks. The Gaussian function has a ﬂ of Dand a Oof 1. The
IMQE function hasa [lof 0,a O of 1 and a kof 0.5.

The training algorithm used in this article for RBF's is the so-called HS
algorithm (Lee and Kill, 1989, Carlin, 1992). HSOL uses standard back propags
for updating the function parameters, but this learning algorithm also dynamic;
allocates new nodes in the hidden layer during training.

4.2 INITIAL MODEL

The starting model represents a gas field, consisting of a sealing shale 1
constant acoustic properties overlying a carbonate reservoir (Fig. 4.4). The acou
properties of this reservoir vary due to changing porosities and fluid conten :
framework, i.e. the definition of the geological entitics at different scale
this model is given in Table 4.1.
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Table 4.1
integration framework for the initial model. The framework
es the geological entities at different scale levels

| Sub-unit Lithology Type Code
_ Marine Shale Seal top.mar.shl
_ Marine Carbonatc Reservoir bot.mar.car

on specifications for this model are given in Table 4.2. The
rithm generated 200 wells. The acoustic properties were used to
ty logs. These were converted into synthetic seismograms by depth-
n, anti-alias filtering to 4 ms and convolution with a 30 Hz Ricker
8). Sample impedance logs and corresponding synthetic seismic
in Fig. 4.5.

GwW

4.4 Cross-scction through the simulated field,
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Table 4.2
Initial model simulation specifications. Probability density
functions are specified as normal distributions with a mean and a
standard deviation (n valuel value2) or as constants (¢ value).

Code Thickness (m) Sonic (us/m) * Density (kg/m2).
top.mar.shl c91.4 ¢ 377 ¢ 2500 3
bot.mar ¢91.4

bot.mar.car n2789 11.5 n 2280 50
bot.mar.car.gas’ n2953 16.4 n 2100 100
Gas column * n 15.2 15.2

* Sonic and density distributions are correlated negatively (cor. coefficients
the sonic distribution of the gas filled carbonate is correlated positively {
coefficient=1) with the sonic distribution of the brine filled carbonate. !

* The acoustic properties of the carbonate reservoir depend on the fluid content

“ Maximum thickness = 45.6, minimum = 0. Values are repicked until |
constraints are met,

4.3 EXPERIMENTS

In all experiments training and test data sets consist of 100 patterns @
Sampling rate of the seismic data is 4 ms. A 30 Hz Ricker wavelet was
generate the synthetic seismic traces in experiments | until 6 and 8. In expe
different Ricker wavelets (20,30,40,50 Hz frequency) were used. The refe;
for selecting the seismic data was the time corresponding to the top of the re
Selected seismic samples were interpolated relative to this reference time.

In all experiments, networks are trained to estimate the net thickness of the
column and the average density of the gas-filled reservoir rock from the sel
response. The average density is calculated as:

n
.lei/li
==,

(4.10)
where:

P is the density, A the layer thickness, I the layer index and 7 the numb
layers.
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4.5 Example of impedance logs and corresponding
synthetic seismic traces of the inttial model.

vork specifications are presented per set of experiments in a table. The
of the test dataset are summarised in Table 4.12 for all experiments.
ormance statistics and graphics are given in Appendix [11. The results
ed in Section 4.4.

twork design
ent 1 the network design is varied. The size of the input layer is

reduced from 25 in experiment A to 13, 7 and 1, in experiments B, C
ectively.
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Table. 4.3
Experiment 1 network specifications. The size of the input layer is
varied.
Network paradigm Multi-Layer-Perceptron
Number of nodes: input-hidden-output A) 25-3-2
B) 13-3-2
C) 7-3-2
D) 1-3-2
Seismic time gate relative to the A)-25-75
reference time-pick (ms) B)-25-25
C)-12-12
D)0-0
Output average density
net gas column thickness
Activation function input layer none
Activation function hidden layer sigmoid
Activation function output layer lincar
Training algorithm backpropagation

In experiment 2 the size of the hidden layer is varied. In experiment A, the sii
the hidden layer is first increased to 9. Then in experiment B, the size is reduce
node. In experiment C, the network size is increased again with the introducti :
second hidden layer. The results of these experiments can be compared with
results of experiment 1A where three nodes were used in the hidden layer.

In experiment 3 Radial Basis Function networks are tested. In experiment
Gaussian activation function is used in the hidden layer and in experiment
IMQE activation function is used. Training is stopped after 50.000 patterns. I
identical to other experiments, described in this chapter. Training is contin ;.'Q,
another 150.000 patterns, because the RBF networks are sn!l learning. The re
of these prolonged training sessions for experiments A and C are reporte
experiments B and E, respectively. In the RBF experiments, the HSOL ra
algorithm of Lee and Kill (1989) and Carlin (1992) is used.

In experiment 4, the final design experiment, different activation function 5 0
hidden layer are tested for MLP networks. In experiment A, a tangent hyper
function is used, followed by a prime tangent hyperbolic, a prime sigmoid, a
and a linear function, in experiments B, C, D and E, respectively. The results ¢ Ci
compared with the results of experiment 2A, where a sigmoid activation funet
used in the hidden layer in a similar network configuration.
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Table. 4.4
eriment 2 network specifications. The size of the hidden layer

aradign Multi-Layer-Perceptron
modes: input-hidden-output A)25.9-2
B) 25-1-2

: C)25-9-3-2
ime gate relative to the| -25t0 75 ms
me-pick (ms)

average density
_ net gas column thickness
ction input layer none

function hidden layer sigmoid
i function output layer linear
algorithm backpropagation

Table. 4.5

riment 3 network specifications. Radial Basis Functions;
vation functions are varied along with the number of
trained.

aradio Radial Basis Functions

des: input-hidden-output 25-3-2 (end of training 25-3-2)
ime gate relative to the| -25-75
time-pick (ms)

average density

_ net gas column thickness
function input layer none

o function hidden layer A) Gaussian

B) Gaussian
C) IMQE
D) IMQE
 function output layer lincar
’;‘. 1thm HSOL

A) 50.0000 patterns trained
B) 200.000 patterns trained
C) 50.0000 patterns trained
D) 200.000 patterns trained




104 Part | « Exploration: Neural Networks

Table. 4.6
Experiment 4 network specifications. MLP network with varying
activation functions in the hidden layer.

Network paradigm Multi-Layer-Perceptron
Number of nodes: input-hidden-output 25-9-2
Seismic tme gate relative to the -25t0 75 ms
reference time-pick (ms)
Output average density
net gas column thickness
Activation function input layer none
Activation function hidden layer A) tangent hyperbolic

B) prime tangent hyperbolic
C) prime sigmoid

D) ramp

E) lincar
Activation function output layer linear
Training algorithm backpropagation

4.3.2 Increasing the geological complexity

In the following experiments the complexity of the geological model is
by introducing new variables that affect the scismic response. The né
specifications are kept constant in these experiments (Table 4.8).

the simulation specification in Table 4.9. Examples of impedance
corresponding seismic responses are shown in Fig. 4.6.

Table 4.7
The integration framework for the carbonate-shale model.

Unit Sub-unit Lithology Type

Top Marine Shale Secal

Bottom Marine Carbonate Reservoir
Shale Waste
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Table 4.8
Network specification experiments 5, 6 and 7.

dig Mult-Layer-Perceptron
put-hidden-output 25-9-2

-25 to 75 ms

average density

net gas column thickness

 function input layer none

function hidden layer tangent hyperbolic
anction output layer linear
ithm backpropagation

Table 4.9

Jarbonate-shale simulation specification. Probability density
tions are specified as normal distributions with a mean and a
ard deviation (n valucl value2) or as constants (¢ value).

Thickness (m) Sonic (us/m) * Density (kg/m3) o
c914 ¢ 377.3 ¢ 2500
c914
n9.14 3.05 n 2789 11.5 n 2280 50
X n 2953 16.4 n 2100 100
nl51.5 n 360.9 6.6 n 2550 50
8¢ n 152 15.2

 and density distributions are correlated negatively {(cor. coefficient=-1);
distribution of the gas filled carbonate is correlated positively (cor.
'l) with the sonic distribution of the brine filled carbonate.

pustic properties of the carbonate reservoir depend on the fluid content.
thickness = 45.6, minimum = 0. Values are repicked until these

ment 6 the complexity of the model is increased even further. Not only
yers affecting the seismic response, also the acoustic properties of the
re varied. The variation in acoustic properties of the overburden is even
the variations within the target zone (Table 4.10). Examples of
ance logs with corresponding seismic responses are shown in Fig.
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Fig. 4.6 Examples of acoustic impedance logs and
corresponding synthetic seismic traces of the carbonate-shale
model.
Table 4.10
Overburden model simulation specifications. Probability density
functions are specified as normal distributions with a mean and a
standard deviation (n valuel value2) or as constants (¢ value).
Code Thickness (m) Sonic (us/m) * Density (k
top.mar.shl ¢91.4 n 377.3 16.4 -1 2500 500
bot.mar ¢91.4
bot.mar.car n9.14 3.05 n2789 11.5 n 2280 S50
bot.mar.car.gas ' n 295.3 16.4 n 2100 100
bot.mar.shl n:1:5:1.5 n 360.9 6.6 n 2550 50
Gas column * n 152 15.2

* Sonic and density distributions are correlated negatively (cor. coeffic
the sonic distribution of the gas filled carbonate is correlated positive
coefficient=1) with the sonic distribution of the brine filled carbonate.

* The acoustic properties of the carbonate reservoir depend on the fluid con

* Maximum thickness = 45.6, minimum = 0. Values are repicked
constraints are met.
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4.3.3 Seismic bandwidth variations

In the following experiment (Experiment 7), the synthetic seismic traces of
overburden model are convolved with different wavelets to investigate the i uj_?_’___}
of the seismic bandwidth on the inversion results. The wavelets are 20, 30, 40

50 Hz zero-phase Ricker wavelets (Fig. 4.8). The impedance logs and va

synthetic seismic traces are presented in Fig. 4.7. The network specificatior
given in Table 4.8.

Ricker wavelets

Amplitude

Time (ms)

Fig. 48 Ricker type wavelets used to generate synthetic
secismograms.

Table 4.11

Network specifications experiment 8.

Network paradigm Multi-Layer-Perceptron

# of nodes: input-hidden-output 26-9-2 (25 seismic samples +

gross gas-column)

Input time gate

-25 10 75 ms

Output

average density, net gas column thig

Activation function input layer

nonc

Activation function hidden layer

tangent hyperbolic

Activation function output layer

lincar

Training algorithm

backpropagation
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ng experiment a carbonate-shale model with a constant overburden
nce is used (Table 4.9). The network input consists of 26 input
re fed by 25 seismic samples and a gross gas-column thickness. There
raints to the design of networks in the GeoProbe system which was
se experiments. It is possible to design (and train) networks that are fed
on of seismic and well data. Application of such networks to the
on slice, is possible as well. The only condition is, that the well
 supplied in the form of a XYZ grids. Therefore, any property that can
, in principle, be used to constrain the inversion process. In the case
8, a gross gas-column grid should be supplicd together with the
slice.

ork specification of experiment 8 is presented in Table 4.11.

des the description of the experiments with simulated data. The results
mmarised in Table 4.12 and will be discussed hereafter. Additional
siatistics are presented in Apendix 111

4.4 DISCUSSION OF THE RESULTS

1 1 shows that gas column thickness prediction depends on the size of
. The normalised RMS error increases from 0.33 through 0.44 and

' when the number of input nodes is reduced from 25 to 13, 7 and 1,
p. This behaviour can be explained as follows: when the number of nodes
he network is offered a smaller time-gate around the reference time.
columns will have a seismic effect outside this gate. The network must
apolate, rather than interpolate the data. Consequently the prediction

¢ prediction depends much less on the size of the input layer, This is
density variations (= impedance variations, since density and sonic were
th a -1 correlation coefficient in the simulation) affect the seismic
her than the waveform. Because of tuning effects, seismic amplitudes
ly related to density, however. For this reason, a one-node network
the density as well as the larger-size networks, normalised RMS
8,0.29, 0.32 and 0.51 for 25, 13, 7 and | input nodes.

g ,‘Eanh Sciences' proprietary seismic reservoir characterisation software package.
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In experiment 2 the size of the hidden layer was varied. These results c
compared with the results of experiment 1A. It is clear that with one no u;"
hidden layer, experiment 2B, two variables cannot be predicted simultaneo
training performance graph (App. I) shows that training initially gives a reaso
result for the density prediction. When training is continued, the gas o0
prediction improves at the expense of the density prediction performance. 'he
results are obtained with 9 nodes in the hidden layer, with normalised RMS e e
0.24 for density and 0.32 for gas column prediction. Adding another hidd vg
experiment 2C, deteriorates the prediction results to 0.31 and 0.39 for dc Sif)
the gas column, respectively.

Table 4.12
Normalised RMS errors on the test datasets for the average density
of the gas-filled carbonate rock and the net gas-column thickness.

Experiment Norm. RMS Density Norm. RMS Gas column
1A (.28 0.33
1B 0.29 0.44
16 0.32 0.54
1D 0.51 0.97
2A 0.24 0.32
2B 0.93 0.48
2C 0.31 0.39
3A 0.46 0.37
3B 0.33 0.30
3C 0.45 0.31
3D 0.29 0.19
4A 0.18 0.25
4B 0.18 0.27
4C 0.22 0.36
4D 0.13 0.44
4E 0.13 0.43
k] 0.29 0.58
6 0.83 0.60
TA 0.87 0.61
7B 0.83 0.60
7C 0.85 0.66
7D 0.83 0.60
8 0.28 0.21

Radial Basis Functions networks were tested in experiment 3. These networ
normally applied to lower dimensional problems (up to 5 dimensions), wh
strong correlation exists between the input variables. In these experiments a
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ween the input variables does exist, but the dimension of the problem
than in standard RBF applications. Still RBF networks give good
ly for the prediction of the gas column thickness where a normalised
[0.19 is reached after prolonged training using the IMQE activation
comparison with MLP networks, RBF networks take longer to
> IMQE activation function performs better than the Gaussian function
iments.

4 different activation functions in the hidden layer were tested. These
n be compared with experiment 2A, where the sigmoid function was
ng experiments 2A and 4A shows that the tangent hyperbolic
function performs better than the sigmoid function. Normalised RMS
gnsity and gas column are (.18 and 0.25 for tangent hyperbolic and 0.24
sigmoid functions, respectively. Also the prime tangent hyperbolic
8s better (0.18 and 0.27) than the sigmoid and prime sigmoid (0.22 and
amp and lincar functions score very well when predicting the density
ut perform less well when predicting the more difficult gas column
and 0.43, respectively). The good performance on the density can be
)y the fact that seismic amplitudes outside the tuning range are related
lhe density.

ments'S and 6, the geological model was made more complex. These
1 1 . o .
gompared with the results of experiment 4A.

ations introduced in experiment 5 have a considerable effect on the
mn prediction. The normalised RMS error decreases from 0.25 in
A 10 0.58 in experiment 5. This result can be explained by the fact that
olutions exist in the carbonate-shale model space. The introduction of
into the reservoir, will have a large effect on the net column thickness
ic response. These effects, however, are not necessarily related, and,
g on the random sclections made in the Monte Carlo simulations,
‘different seismic signals might be related to similar net gas columns.
ic amplitudes are less affected by the introduction of shale intercalations.
e average density is corrected for thickness of individual layers |Eq.
ore, the decrease in performance of the density prediction is not so
om 0.18 in experiment 4A 10 0.29 in experiment 5),

et 6 the geological model complexity was increased by introducing a
the acoustic impedance properties of the overburden. Such variations
smic amplitudes and hence the prediction performance of the reservoir
ormance decreases from 0.29 in experiment 5 to 0.83 in experiment 6.
however, that the standard deviation of the acoustic properties of the
15 almost a factor of 10 higher than the standard deviations of the
ies of the carbonate rock (Table 4.6). Changes in scismic amplitude
primarily caused by changes in the overburden, which are completely
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independent of the property of interest. The performance of the gas col
prediction is hardly affected by the variations in the overburden; a slight decres
normalised RMS errors was observed: from 0.58 to 0.60. '

In experiment 7 the scismic bandwidth was varied, The results show tha
frequency content of the seismic data does not affect the performance of
prediction. The normalised RMS errors are 0.87, 0.83, 0.85 and 0.83 for

affected by the frequency content. The vertical resolution increases with incres
bandwidth, hence an increase in gas column prediction performance was antieij
with increasing frequency. The results do not show this increase. Instead |

column prediction performance is independent of the frequency contel
normalised RMS errors are 0.61, 0.60, 0.66 and 0.60 for 20 Hz, 30 Hz, 40
50 Hz Ricker wavelets, respectively. A possible explanation for this behavie
that the property of interest, i.c. the gas column thickness, was calculate
well data scale, while the inversion works on the seismic scale. In the

seismic response is related o a well property.

In experiment 8 the gross gas-column was supplied to the network in addit
25 seismic samples. These results are compared with the results of exp
where the network was trained on seismic samples only. As expected
density is predicted equally well by both networks (normalised RMS errors an
and 0.28 for experiment 5 and 8, respectively. Also, as can be expectes
prediction of the net gas-column thickness is far better for experiment 8 th
experiment 5 (normalised RMS errors are 0.21 and 0.58, respectively.

4.5 CONCLUSIONS

From the aforementioned experiments, the following conclusions are drawn

* In order to avoid extrapolation of results, the scismic time-g
analysed must cover the response of the largest thickness, for thickness-
inversions.

* The size of the hidden layer should not be chosen too small.

* A one node hidden layer can predict one variable only.

* One hidden layer is sufficient.
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ance of RBF nctworks is comparable to MLP networks. RBF
tks performed slightly better on the thickness inversion and slightly
2 on the density inversion.

sence of RBF networks is slower than that of MLP networks.

ce for MLP network. For RBF networks the IMQE activation
ve a better performance than the Gaussian function.

ction performance of the linear and ramp activation functions is good
isity because this is a lincar problem outside the tuning range.

Network performance deteriorates when new variables are introduced which
e seismic response and the target variable independently. In other words;
ce deteriorates when non-unique solutions are introduced in the
L.

1ations in the impedance of the overburden affect the seismic amplitudes
efore the prediction performance of impedance-related properties of the

troduction of new layers affect the seismic waveform and therefore
ction performance of thickness-related properties of the target level.

ormance of the predictions of density and gas-column thickness are
endent of the seismic band-width.

ormance of the prediction can be increased by supplying additional
: mic) information to the network.
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APPENDIX I

experiments are presented in this appendix. The performance
and test datascts arc presented in one table per experiment. The
he test dataset, is presented in three figures, for each experiment.
ure shows the normalised RMS error as a function of training
lid line indicates the training performance of the average densily
ed line indicates the net gas-column thickness. The middle- and
e show the network estimated values versus the target values of the
ge density and net-gas column thickness, respectively). In the
S, these values have been scaled 10 a range between -1 and +1.
led values are shown.

‘-
Normalised RMS RMS Mean Absolute Max Absolute
0.28 13.47 kg/m> 9,63 ke/m> 51.48 kw/m-
set 0.33 367 m 226 m 16.56 m
0.28 1429 kg/m® 11.20 kg/m® 3865 kg/m’
0.33 316 m 217 m 1340 m
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1B Normalised RMS RMS Mecan Absolute
Density Traming set 029 14.33 kg-’m3 10.53 kgim3
Gas column Training set 046 516 m 312 m
o Density Test set 0.29 14.53 kg/m® 1092 kgim?
(Gas column Test set 044 432 m 266 m
1C Normalised RMS RMS Mean Absolute
Density Training set 032 14 53 I\-g(m3 14 53 kg,'m3
Gas column Tramning set 056 623 m 417 m
Density Test set 032 16,32 kg!m3 12.10 kg.'m3
Gas column Test set 0.54 519 m 360 m
1D Normalised RMS RMS Mean Absolute
Density Training set 0.54 26.15 kg:‘m3 2004 kp,,’mj
Gias column Training set 098 1095 m 903 m
Density Test sel 0.51 2569 kg/m’ 2049 ke/m’
Gas column Tes! set 0.97 936 m 8.08 m
2A Normalised RMS RMS Mean Absolute
Density Training set 0.22 1091 kg/md 795 kg/m®
Gas column Training sel 0.31 343 m 209 m
Density Test set 0.24 12.10 kg/m3 9.10 kg/n|3
Gas column Test sct 0.32 306 m 192 m
2B Normalised RMS RMS Mean Absolute
Density Training sel 092 44 85 kg.“m3 35,35 kym3
Gas column Training set 044 492 m 156 m
Density Test set 093 46 94 kglm'x 18 34 kgh’n"
Gas column Test set 048 4,60 m 351 m
2C Normalised RMS RMS Mean Absolute
Density Traming set 0.30 14,71 lq'./m3 10.65 kg/‘m3
Gas column Traming set 0.41 459 m 284 m
Density Test set D31 15.65 kym] 1245 kw‘m3
Gas column Test set D39 38 m 251 m
iA Normalised RMS RMS Mcan Absolute
Density Training set 0.46 2251 kglm3 16.24 qu’m3
Gas column Training set 0,45 497 m 305 m
Density Test set 0.46 23238 lu,:/m3 17.59 kg/m3
Gas column Test sct 0.37 362 m 236 m
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Normalised RMS

RMS

Mecan Absolute

Max Absolute

0.32 15.48 kg/m® 11.22 kgfm? 66.20 kg/m?
032 358 m 239 m 21.52 m
0.33 1649 Km? 11.55 kg/m> 78.70 kg/m?
0.30 286 m 188 m 15.58 m
Normalised RMS RMS Mean Absolute Max Absolute
047 22.75 kgim® 1722 kg/m® 84.07 kg/m®
0.35 392 m 2.56 m 20.88 m
045 2267 kgim? 17.75 kg/m> 64.95 kg/m®
031 304 m 230 m 1237 m
Nomalised RMS RMS Mezn Absolute Max Absolute
0.29 14.05 ky/m® 10.48 kp/m- 43.84 kgim®
023 254 m 144 m 19.50 m
0.29 14 48 k;,',fm} 1115 k[:"m3 40,34 kgv'm3
0.19 1.8 m 133 m 786 m
Normalised RMS RMS Mean Absolute Max Absolute
017 814 kg/m> 629 kgim3 29.49 ke/m?
021 233 m 153 m 10.28 m
018 9.02 k;:x':||3 708 kp,-'m'} 21.72 kg.”m3
025 245 m 155 m 1409 m
Nommalised RMS RMS Mean Absolute Max Absolute

0.18 8.55 kwm® 672 kg/m’ 2597 kp/m?
0.24 272 m 192 m 9215 m
0.18 90| Lg-'m} 7.04 i:[ym3 2595 kg,’m"‘
0.27 263 m 174 m 1671 m
Normalised RMS RMS Mean Absolute Max Absolute
0.21 1013 kg/m> 7.57 kpfm® 4013 kg/m®
0.35 393 m 246 m 1496 m
0.22 1097 kyjm] 820 kwm" 28 49 kg"ms
0.36 349 m 218 m 1523 m
Normalised RMS RMS Mecan Absolute Max Absolute

013 632 kgim® 496 kg/m? 17.33 kg/m
0.39 430 m 312m 1591 m
0.13 634 kg/m? 501 kg/m? 16.59 ke/m?
044 424 m 287 m 2692 m




118

Part | « Expforatton: Neural Networks

4E Normalised RMS RMS Mean Absolute Max
Density Training set 0.12 585 kg."m-“ 473 kg/m" 13,91 |
Gas column Training set 0.40 442 m 305 m 17.
Density Test set 0.13 651 kg;'m} 5.17 Iq;!m3 18.1 _“
Gas column Test set (.43 414 m 271 m 27,
5 Normalised RMS RMS Mean Absolute Max
Density Training set 0.22 11.69 kg/m> 8.70 kg/m> 4143
Gas column Traming sel 0.50 S17Tm 393 m 1
Density Test set 0.29 1447 kg/m® 1141 kg/m? 416
Gas column Test set 0.58 573 m 420 m
6 Normalised RMS RMS Mean Absolute Max.
Density Traimng set 0.82 37.95 kgim'z 2919 kgi‘m3 1224
Gas column Traming set 0.53 576 m 454 m 1
Density Test set 0.83 4173 kg/m> 33.36 kg/m® 1123
Cias column Test set 0.60 652 m 475 m
TA Normalised RMS RMS Mean Absolute Max |
Density Training set 080 37.11 kgim> 2927 kgim® 1180
Gas column Training set 0.54 583 m 4,53 m 1
Density Test sel 087 4363 kgm® 34.53 kg/m® 1281
Gas column Test set 06l 6.66 m 4.84 m
8 Normalised RMS RMS Mean Absolute 2
Density Training set 0.82 37.95 kg,’m3 29.19 kg/m? 122
Gas column Traming set 0.53 576 m 454 m !
Density Test sct 0.83 41.73 kg/m® 33.36 kg/m> 112
Gas column Test set 0.60 6.52 m 4.75 m
7C Normalised RMS RMS Mean Absolute
Density Training sel 0.82 3793 kg/m 2988 kgim> 114
Gas column Traiming sct 0.59 637 m 493 m B!
Density Test set 0.85 42.72 kg/m® 34.26 kg/m’ 125
Gas column Test set 0_66 723 m 538 m
D Normmalised RMS RMS Mean Absolute
Density Training set 0.82 37.95 kg/m? 29.19 kg/m® 1
Gas column Traming set 0.53 5.76 m 4.54 m 3
Density Test sct 0.83 41.73 kym3 3336 kg/m? 112
Gas column Test set 0.60 6.52 m 475 m 2
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