
Appendix II. Rock-phsycics relationships  

The velocity and density of a porous medium are influenced by the fluids that are present in 
the pore space. The bulk density ρ  as a function of porosity φ  is formulated in the following 
equation: 
 
 ρ = (1− φ )ρs + φρ f ,        

 (II.1) 
 
where: 
ρs   denotes the density of the solid fraction and  ρ f  the density of the pore fluid.  

 
The relationship between velocity, porosity and fluid content is more complicated. Willie's 
time average equation, or (empirical) extensions to this formula have been used by many 
workers (e.g. de Haas, 1992). Willie's equation (Wyllie et.al., 1958) is formulated as: 
 
 t = (1− φ )ts + φt f  ,        

  (II.2)        
where t  denotes sonic travel time of the rock,  ts  the travel time in the solid matrix (i.e. 
empty porous rock), t f  travel time for the pore fluid and φ  is the porosity.  

 
This equation and the empirical extensions thereof, are not very reliable when used as fluid 
replacement algorithms, especially not for the gas-fill replacements.  
 
The most widely used rock-physics models for studying wave propagation effects in porous 
media are the theoretical Gassman and Biot-Gassmann equations (see, e.g. Crans and 
Berkhout). The main difference between the two models is that Gassmann is applicable to 
low seismic frequencies only while Biot-Gassmann is also used for predicting frequency 
dependent velocities. The low frequency limit of Biot-Gassmann equals the Gassmann’s 
equation which is formulated as: 
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where: 
  denotes the seismic velocity for compressional waves. For an explanation of the other 

symbols see Table II.1.  

cp



 Table II.1  Rock and pore parameter definitions. 

Parameter Description Unit 

κs  compressibility modulus solid N/m2 

κ f  compressibility modulus fluid N/m2 

σb  Poisson ratio - 

φ  Porosity - 

ρs  density solid kg/m3 

ρ f  density fluid kg/m3 

ρ  density bulk kg/m3 

cp  P-wave velocity  m/s 

 
Direct application of this equation to calculate rock velocities is of limited use since the 
Poisson ratio σ b  and the compressibility moduli κ f  , κ s  are, in general unknown. If, 

however, the velocity of a rock with a given saturation is known, then the Gassmann 
equation can be used to calculate the velocity of the same rock with a different saturation, as 
follows. 
 
Assume that κw , κhc , sw , shc , σb , ρs , ρw  and ρhc  are input parameters specified by 
the user. For a description see Table II.1; the index hc denotes hydrocarbons. First calculate 
the porosity φ  using (II.1) for the brine-filled case. Then calculate ρ f  using sw , shc , ρw  

and ρhc . Now calculate the density of the hydrocarbon-filled case using (II.1). Use Wood's 
law for the compressibility modulus of the fluid mixture κ f . Wood's law is formulated as: 

 
   1 κ f = sw κw + shc κ hc .       

 (II.4) 
 
 Now the Gassmann equation (II.3) can be employed to calculate the velocity of the 

hydrocarbon-filled rock. The Gassmann equation, as a fluid replacement algorithm is applied 
in two steps. In the first step, the frame strength, or Biot coefficient β  defined as κm κs   
where κm  is the compressibility modulus of the matrix, is derived from the sound velocity 
of the brine-filled rock.  Defining γ  as: 

 
  γ = 3(1− σb ) (1+ σb )  ,        

 (II.5) 
 
 and B  as: 
 
  B = φ (κs κ f −1)  ,        

  (II.6) 

 



then β  can be calculated as: 
  

  β = 1− A ± (A + B)2 − (B2 (1− γ )) ,      

 (II.7) 
 
 with: 
 

  A = ((ρcp
2 κ

s
)+ γ (B − 1)) 2 1− γ( ).     

 (II.8) 
 
 In the second step of the fluid replacement algorithm the assumption is made that φ , β  and 

σb  are independent from the fluid properties. Substitution of these variables together with 
the properties of the fluid mixture in (II.3), yields the velocity of the hydrocarbon filled rock. 
The sonic travel time follows  as the reciprocal of this velocity. 
 
As stated above, the Gassmann equation assumes the velocity to be independent from 
frequency. Biot (1956b) has proved, however, that velocity does depend on frequency. At 
low (seismic) frequencies this effect can in general be ignored. Anderson (1984) proved that 
this effect can be significant in special cases, e.g. low permeability rocks with low saturation 
gas in the pores.  
 
Krief (1990) suggested that the Biot-Gassmann equation is simplified if the ratio of the shear 
modulus and the compressional modulus are constant for a given rock type. Based on this 
premise Krief derived the following equation that relates the compressional velocity to rock 
properties (SPT, 1992): 
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where: 
µs  is the shear wave modulus of the solid. For the other parameters see Table II.1. 
 
The shear velocity Vs  is given by Krief as: 
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  (II.10) 
 
In these equations all variables except the frame strength (or Biot coefficient) β  are derived 
from log analysis. The Biot coefficient can be calculated when the compressional velocity is 
known. Alternatively, an empirical Biot coefficient related to (total) porosity can be used to 
calculate shear and compressional velocity. This empirical Krief equation is given by: 
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 (II.11) 
 
 
Fluid replacement modelling plays an important role in the study of AVO anomalies. This is 
a seismic reservoir characterisation technique in which amplitude variations as a function of 
offset are studied on pre-stack seismic data. AVO studies are of particular interest in the 
exploration for gas. Several successful AVO case studies, aimed at predicting gas-fill, have 
been reported in literature (e.g. Allen et. al., 1993).  The theory behind AVO exploration for 
gas is based on the differences in the response of both compressional (P-waves) and shear-
waves (S-waves) of a porous reservoir rock, depending on its gas-saturations. Even a 
relatively low gas-saturation will substantially lower the P-wave velocities, whilst the S-
wave velocities will be relatively unaffected. The ratio of P-wave velocity to S-wave velocity 
is an important factor in the partitioning of an incident P-wave when it strikes an interface. 
Thus, a change in amplitude can be expected along a reflector (i.e. as a function of offset) 
depending on the gas-fill. For some reservoirs the reflections associated with gas-bearing 
rock  increase in amplitude with offset relative to other reflections. Such an increase with 
offset is anomalous; most reflections decrease in amplitude with offset. Most AVO studies 
try to detect such anomalies.   
 
AVO effects can be modelled with the Zoeppritz equations. A popular approximation of 
these equation has been derived by Shuey (1985). The two-term equation represents the 
angular dependence of P-wave reflection coefficients with two parameters: the AVO 
intercept time A and the AVO gradient B.  In practice (Gastagna and Swan, 1997), the AVO 
intercept is a band-limited measure of the normal incidence amplitude, while the AVO 
gradient is a measure of amplitude variation with offset. Assuming appropriate amplitude 
calibration, A  is the normal incidence reflection coefficient and B is a measure of offset-
dependent reflectivity. Shuey’s equation is written as: 
 
R(θ ) = A + Bsin2 (θ )          
 (II.12) 
 
where: 
R  indicates the reflection coefficient and θ   the angle of incidence. 
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