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Abstract

Seismic attribute analysis is a great tool to
enhance and isolate features related to seismic acquisi-
tion, processing, and geology. However, single or
primary attributes have two drawbacks that can be
addressed by more intelligent work flows. First, seismic
attributes may not uniquely identify the seismic feature
that is the target of the analysis. For example, assuming
that faults are the target of our attribute analysis, a dis-
continuity attribute highlights any lateral change in the
signal, including both incised sedimentary features, and
faulting. Second, seismic attributes may reveal some of
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the target features, but not all. For example, discontinu-
ity attributes will not highlight faults that have small
fault offset compared with the seismic resolution.
Methods that recombine two or more primary attributes
can be used to improve a complete and unigue isolation
of a target feature in the seismic data. For example,
fault detection can be performed by recombining dis-
continuity and curvature attributes, such that
discontinuities attributed to sedimentary structures are
suppressed, while low offset faults, represented by seis-
mic flexures are highlighted.
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Among other methods, neural networks are one
of the most efficient methods to recombine multiple
input attributes and achieve a high quality extraction of
a target feature or rock property from seismic data. The
method is complex and difficult to analyze, and often,
the black-box character is cited as a reason to stay clear
of this method. However, in specific cases the benefits
of using neural networks compared to baseline methods
is so large that by far they outweigh any (perceived)
negatives, and the neural network work flow is the cor-
rect tool to enhance a geological interpretation of
seismic data.

The aim of this paper is to “translate” the neural
network method from a specialized tool that can only
be used in the hand of an expert user, to a general inter-

Introduction

How to assess seismic attributes

The approach of using neural networks is very
similar to seismic attributes. Therefore, it is useful to
first discuss objectives and quality assessment of seis-
mic attributes in general and expand our analysis of
neural network work flows within these concepts.

The general objective of using seismic attributes
is to isolate and map certain geology-related features in
the seismic data. The quality of a seismic attribute can
be quantified in terms of completeness and uniqueness
of the geological target feature.
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pretation work flow that can be used by informed (but
not specialized) general interpreters. To achieve that,
this paper will address the following issues:

. When to choose a neural network work flow (and
when not).

. Basic theory of neural networks

. General, but practical, guidelines for designing
and training a neural network.

. Methods for quality control and validation of
neural network results.

. How to use the neural network results as part of
the larger interpretation work flow.

These talking points will be illustrated with
actual data examples.

As an example, seismic discontinuity attributes
(e.g., similarity, coherence, or variance) are often erro-
neously equated to fault (mapping) attributes. However,
these attributes map seismic discontinuities, which
besides faults, can be associated with erosional inci-
sions, gas chimneys, mass transport systems, and other
geological features, making them geologically non-
unique (Fig. 1). From geophysical knowledge, we know
that not all faults visible in the seismic data are associ-
ated with reflector discontinuities. Faults having low
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dip-slip relative to the dominant seismic wave length
may for instance appear to be seismic flexures, not seis-
mic discontinuities. In that sense, the discontinuity
attribute does not map all the faults that a human inter-
preter sees in the seismic data (Fig. 2). It should be
noted that the impact of the geological nonuniqueness
and geological noncompleteness of an attribute varies
according to the application and is interpretation-
dependent. It may be that some artifacts may not be
harmful as they are easily recognized by the interpreter
or corrected with a simple filter operation. However,
some artifacts that may be harmless for a manual inter-

Meta-attributes

Meta-attribute methods come in a wide variety,
from simple arithmetic operations to complex neural
networks. The amount of improvement towards a
robust two-way link of an attribute with a target feature
varies with the chosen method. The investment of inter-
preter’s time and computational resources will also vary
with methodology. The desired amount of refinement
and complexity should be determined on a case-to-case
basis; the choice of the best method depends on the
character of the interpretation problem and the desired
accuracy of the output. A number of methods have been
suggested in the literature, such as common sense arith-
metic combinations, cross-plotting, linear regression,
nonlinear regression, neural networks, self organizing
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pretation of the attribute may be very harmful to
automated work flows.

The obvious solution to the problem of noncom-
pleteness and nonuniqueness is to design better seismic
attributes. One can focus on perfecting one single attri-
bute; however, this is often difficult and often provides
only partial solutions. A more productive work flow is
to recombine several primary attributes into a more
complex meta-attribute (Aminzadeh and de Groot,
2006). In this context, primary attributes are 'standard’
attributes that can be readily derived from the seismic
data. There are many methods for recombining seismic
attributes, including neural network methods.

maps, and fuzzy logic, to name a few. Tables 1 and 2
list guidelines when different methods may be suitable.

Of the methods listed in Tables 1 and 2, the neu-
ral network option is very flexible for building an
accurate meta-attribute, without too much user involve-
ment. The main advantages of the neural network
methods are:

1.  The choice of input attributes is not critical, as
several (but not all) input attributes may be corre-
lated, meaningless, noisy, or inconsistent without
affecting the neural network’s performance. This
makes it suitable for geological interpretation of
seismic data, in which one has to deal with noise,
ambiguities, and lack of a clear model.
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2. It is a versatile tool as it can be trained to mimic
human interpretation.
3. It is a good method for capturing multivariable

nonlinear relationships.

However, the neural network method does have
disadvantages, most importantly:

1.  The relationship between specific input and out-
put within a neural network is hard to verify due
to its inherent nonlinearity.

2. A neural network may find a local solution and
not the best global solution. However, most neu-
ral networks do have algorithms that are able to
avoid local solutions. Several validation methods

Neural Network Methodology

History and introduction

Artificial neural networks have been inspired by
what is known as the “brain metaphor.” This means that
these models try to copy the capabilities of the human
brain into computer hardware or software. The human
brain has a number of properties that are desirable for
artificial systems (e.g., Schmidt, 1994):

. It is robust and fault tolerant. Even if neurons die
and are not replaced, the performance of the brain
does not deteriorate immediately.

. It is flexible. This means that the human brain
can adjust itself to new situations and can learn
by experience.
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exist to blind-test the neural network for accu-
racy, implicitly checking for local optimization
problems.

3. Although a neural network gives great results
within the domain that is sampled by training, it
is not very good at extrapolation. So the applica-
tion of the neural network is limited by its train-
ing experience.

In the cases that one wants or needs to combine
many attributes to accurately map a geological feature,
the neural network method is an attractive alternative to
its competing methods.

. It can deal with information that is inconsistent or
contaminated with noise.
. It can handle unforeseen situations by applying

knowledge from other domains and extrapolating
this knowledge to new circumstances.

. It can deal with large amounts of input data and
quickly extract the relevant properties from that
data.

. It is highly parallel; hence it has a high perfor-
mance.

Neural network research started in the 1940s with
McCulloch and Pitts’ (1943) description of the logical
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function of a biological neuron. Specifically, they
described the transmission of neural signals as an all-or-
nothing situation. A neuron fired only if the cell had
been stimulated above a certain threshold. The output
signal would, in general, have a constant strength. In
their paper, McCulloch and Pitts described that net-
works consisting of many neurons might be used to
develop the universal Turing machine (a kind of com-
puter described by Turing (1937) that could, in
principle, solve all mathematical problems). Research
in neural networks suddenly stopped following a publi-
cation by Minsky and Papert (1969). This paper showed
that a relatively simple problem (the so-called XOR-
problem) could not be solved by the linear algorithms
used at the time. The major breakthrough, which
relaunched the interest in neural networks, was the dis-

Numerical details

Multilayer perceptrons (MLP)

The most general and most widely used neural
network model is the “multilayer perceptron” (MLP).
The basic building block of this model is the perceptron
(Fig. 3), a mathematical analog of the biological neu-
ron, first described by Rosenblatt (1962).
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covery in the eighties of a nonlinear optimization
algorithm overcoming the previous limitations (Rumel-
hart et. al., 1986).

Since then, neural networks have emerged as a
promising computing technique that enables computer
systems to exhibit some of the desirable brain proper-
ties. Various types of networks have been applied
successfully in a variety of scientific and technological
fields. Examples are applications in industrial process
modeling and control, ecological and biological model-
ing, sociological and economical sciences, as well as
medicine (Kavli, 1992). Within the exploration and pro-
duction world, neural network technology is now being
applied to geologic log analysis (Doveton, 1994) and
seismic attribute analysis (Schultz et al., 1994).

The mathematical expression of the biological
neuron can be written as an activation function, A,
applied to a weighting function, W, defined as:

where y is the neural network input vector written as y;
with i=1,...,L and w is the weighting vector w; with
i=1,.,L.
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In MLPs, the binary activation function is often
replaced by a continuous function. The most widely
used activation function is the sigmoid function
(Fig. 4), defined as:

2
A(W)zm—l. ................................ 3)

In a MLP, the perceptrons are organized in layers
(Fig. 5). In its simplest form, there are three layers; an
input layer, a hidden layer, and an output layer, and
there are no connections between neurons belonging to
the same layer. MLPs are trained on a representative
dataset, a form of supervised learning. Known exam-
ples, consisting of input patterns and corresponding
output patterns, are repeatedly fed to the network dur-
ing the training phase. The learning algorithm (back-
propagation), which is widely used to train this type of
network, attempts to minimize the error between the
predicted network result and the known output by
adjusting the weights of the connections. The algorithm
has been derived independently by a number of
researchers: Werbos (1974), LeCun (1985), Parker
(1985), Rumelhart et al. (1986), and Fahlman (1988).

MLPs have two properties of interest: abstraction
and generalization. Abstraction is the ability to extract
the relevant features from the input pattern and discard
the irrelevant ones. Generalization allows the network,
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once trained, to recognize input patterns that were not
part of the training set.

Radial Basis Function (RBF) neural networks

Radial basis functions have been used for data
modeling (curve fitting) by many researchers; e.g.,
Powell (1987) and Poggio and Girossi (1989).
Recently, these functions have been put in a neural net-
work paradigm in what is called Radial Basis Function
(RBF) neural networks (Broomhead and Lowe (1988);
Moody and Darken (1988); Lee and Kil (1988); Platt
(1991)). RBF networks have been applied in a seismic
reservoir characterization study by Schultz et al.
(1994).

RBF networks have the same feed-forward lay-
ered architecture as MLP networks (Fig. 6), but the
weighting function W and the activation function A
are different. With RBF networks, there are only
weights between output layer and hidden layer (Fig. 6).
Each node in the hidden layer has a unique function,
called the basis function. For the simple network of
Figure 4 having a single input, a single output, and two
basis functions, the output is given by the sum of the
two basis functions, each multiplied by its own weight-
ing factor. In principle, any type of function can be used
as a basis function. For example, Kavli (1992) uses
splines as basis functions, but they are only denoted
RBF networks if radial basis functions are used.

Radial basis functions give local support to data
points. The output of the hidden nodes peaks when the

445



input is near the centroid of the node, and then falls off
symmetrically as the Euclidean distance between input
and the centroid of a node increases (Fig. 7). The conse-
quence of this behavior is that RBF networks are good
for data interpolation but not good for data extrapolation.

Several different radial basis functions are in use,
with the Gaussian function (Fig. 7a), being the most
widely used. If the radial basis center R is defined as:

(i — #i !2 ,
i1 of

1
where i represents the center location of each basis

and oj indicates a scaling of the width of each basis,
then the Gaussian activation function is given by:

Mr

R:

A(R)= exp{—%j

Multiplication of the activation function A(R)
with a weighting factor w then yields the output o

(Fig. 6).
Another widely used RBF function is the so-

called Inverse Multiquadratic Equation (IMQE,
Fig. 7b), defined as:
1

A(R):—z’ ............................................ (6)
R+k

where k is an empirically-determined smoothing

factor.
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Note, that the widths in RBF functions are speci-
fied independently from each input dimension, making
the functions elliptical rather than spherical. Note as
well, that unlike the activation functions for MLPs, no
bias is included in the RBF functions. Center locations
typically are determined by randomly selecting training
examples from a large set of training data. The smooth-
ing parameters and the number of nodes are typically
adjusted empirically during training.

RBF neural networks and MLPs have been com-
pared by many. Kavli (1992) report consistently better
performance of RBF networks in five independent
experiments. Another important aspect when compar-
ing RBF networks and MLPs is the training speed. RBF
networks can be trained within a fraction of the time
that is required for training MLPs. RBF networks, how-
ever, generally require more nodes to obtain similar
performances.

Neural network in the work flow of geological
interpretation

When utilizing neural networks in geological
interpretation and the mapping of a geological target,
the process can be generalized by the following steps:

. Selection of the input attributes that will be input
to the neural network,

. Selection of the training data for the neural net-
work,
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. Training of the neural network, including neural
network validation by a random test set,

. Geological validation of the neural network, and

. Application of the neural network.

These steps are discussed in more detail using a
few examples.

Examples of Neural Network Application in Geological Characterization

User-driven neural network mapping

Statement of the problem

Gas chimneys are normally visible in the seismic
record. However, subtle gas clouds above hydrocarbon
reservoirs, deep chimneys related to expulsion from
source rocks, and fault-related hydrocarbon migration
pathways are often difficult to distinguish in seismic
data, as they have a diffuse character and weak expres-
sion in the seismic record; hence, they are difficult to
map. They are often more visible on vertical seismic
sections than on time slices, making it challenging to
map their lateral extent. Therefore, a method for detec-
tion of gas chimneys in poststack 3D data is needed to
improve the identification of gas chimneys in seismic
data, to map their distribution, and to allow them to be
visualized in three dimensions.

Chimneys are recognized as vertically-aligned,
low-amplitude, chaotic zones in normally processed
seismic data and will often cause a frequency washout
or attenuation of high frequencies (Brouwer et al.
2008). Thus, individual trace-to-trace attributes such as
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similarity and dip variance will often highlight chim-
neys. Single trace attributes such as instantaneous
amplitude, energy, and frequency will also show chim-
neys. However, individual attributes will also highlight
features not related to chimneys; for example, low simi-
larity will also result from faults or mass transport
deposits.

A method combining multiple attributes through
a neural network to isolate gas chimneys from other
features has been developed by Heggland et al. (2000)
and Meldahl et al. (2001). Figure 8 depicts the adopted
supervised classification work flow. A number of loca-
tions are interpreted manually in the data, selecting
locations where the chimneys can be seen in the data.
Additionally, a number of counter examples are inter-
preted on locations that do not exhibit chimneys. A
range of attributes are then calculated at these locations,
and the neural network is trained to produce the value
1.0 at the chimneys and the value 0.0 at the nonchimney
locations. Once the neural network is trained, the attri-
butes are computed throughout the seismic volume, and
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the trained neural network will create a chimney vol-
ume from it, where high values indicate large
probability of a chimney, while low values indicate low
probability for a chimney to be present.

Selecting the input attributes

The practical approach for finding good input
attributes is to systematically list those attributes that
describe different aspects of the geologic target and that
can be used to separate the geological target from
potential false positives. The following list consists of
examples of attributes that can detect gas chimneys:

. Verticality (implemented by setting the parame-
ters of most other attributes to vertical features),

. Discontinuity,

. Chaos,

. Signal-to-Noise ratio,

. Frequency anomalies,

. Windowed RMS amplitude anomalies, and

. Two-Way-Time to calibrate the neural network
for any depth related effects, for example fre-
quency attenuation.

Selecting the training data

An interpreter provides examples locations (x,y,z)
to a neural network to discriminate between chimney
locations and nonchimney locations. In this case, one
wants to select training points that allow the neural net-
work to comprehend the full problem: that is, with
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emphasis on difficult zones where either the geological
feature is imaged very subtly by only a few of the input
attributes or areas where false positive are present in the
image of one or more of the input attributes.

However, one should avoid ambiguous areas
where the interpreter is unsure whether the geological
feature is present or not. The procedure involves ini-
tially reviewing the seismic volume to select lines or
cross-lines that display the suspected vertical hydrocar-
bon migration pathways or gas chimneys most clearly.
Gas chimneys are often associated with shallow ampli-
tude or AVO anomalies and these anomalies can be
used to guide identification of chimneys. Surface seeps,
either from synthetic aperture radar (SAR) or shallow
geo-hazard surveys, can also guide finding locations of
shallow chimneys. Chimney picks are made in the most
obvious chimneys. Nonchimney picks are also made in
chaotic or low amplitude areas that are suspected not to
have chimneys. Nonchimney picks are also made along
faults that show no evidence hydrocarbon migration
(Fig. 9). A number of attributes that have been shown
on numerous datasets to highlight chimneys are then
evaluated on the key seismic lines. Attributes that show
the chimneys most clearly are chosen as input to a neu-
ral network.

The type of neural network used in this method-
ology is a supervised neural network that learns to
distinguish the chimney locations from the nonchimney
locations and produce values of 1.0 at the chimney
locations and 0.0 at nonchimney locations (Meldahl et
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al.,, 1999). Once the interpreter is satisfied with the
resultant neural network training, based on a reconnais-
sance of key lines, the neural network can be applied to
the entire seismic volume. The resulting chimney prob-
ability volume will have values range between zero and
one, based on each sample’s similarity to the chimney
picks. This volume can then be overlain on seismic sec-
tions or visualized in three dimensions.

Training the neural network, including neural net-
work validation by a random test set

During neural network training, the example
picks made by the interpreter are fed to the neural net-
work, which is an input vector of attributes and the
correct classification (here chimney or nonchimney).
The neural network is then optimized by back-propaga-
tion of the erro, as described in the theory section.
During the training phase, it is very important to find
the proper stopping point, as overtraining may other-
wise occur. Overtraining occurs when the neural
network finds relations in the training examples that are
not universal. One method to prevent this from happen-
ing is to randomly extract a number of the example
points from the interpreter-provided training examples
and exclude these from neural network training, while
still evaluating the prediction error for these points,
called the test set error. Generally, optimum training has
been achieved once the test set error reaches a plateau
or increases with increasing training iterations
(Fig. 10).
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The training phase also can be used to select or
deselect attributes from the neural network input. Obvi-
ously, using too many attributes would lead to a heavy
computational burden and an under-determination of
the inverse problem. A method for reducing the number
of attributes to the neural network, while at the same
time optimizing the set of input attributes, is to test sev-
eral sets of input attributes (that may be partially
overlapping). For each test, the attributes that provide
more important contributions to the output prediction
are retained for the next test, while the less important
attributes are discarded. By testing all possible input
attributes, the final neural network is then created using
only the best attributes.

Application and validation methods

Besides numerical validation using the test set,
one would like to achieve secondary validation for the
correctness of a neural network prediction. There are
different methods to achieve this goal, which are very
similar to methods to verify seismic attributes and well
predictions in general:

. Geologic: The outcome of neural networks
should fit in the standard geological understand-
ing. That is if a neural network predicts hydrocar-
bon saturation, saturation should be found up-dip
and have a down-dip structure conformable fluid
contact. Gas chimneys mapped in 3D should gen-
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erally terminate at a regional seal and be associ-
ated with active source rock.

. Correlation with independent data: For the exam-
ple of gas chimneys, at locations where a bore-
hole intersects a seismic gas chimney, elevated
levels of C2 through C5 are often found in mud
logs (Leseth et al., 2002), which would be a posi-
tive confirmation of the neural network.

In the case of gas chimneys, there are several pit-
falls related to both geological and geophysical
phenomena that can occur in the seismic data. \erti-
cally aligned zones of chaotic data can occur for other
reasons than gas chimneys. Geologic features such as
diapiric shale and salt, mass transport complexes, and
volcanic pipes can look similar to chimneys. De-water-
ing of mudstones related to burial compaction can
result in polygonal faulting which can look chaotic on
seismic section views. Poor seismic imaging related to
surface statics, fault shadows, complex structuring
(imbricate thrusts), or sub-salt or sub-thrust intervals
also could be misleading. In the case of gas chimney
prediction, the following five sources of validation can
be systematically applied to the results (if available).

1. Presence of drilled fields or seismic evidence of
hydrocarbon presence, such as direct hydrocar-
bon indicators (amplitude, AVO, or frequency
attenuation anomalies), and chemosynthetic car-
bonate build-ups associated with the chimney.

2. Linking the gas chimney to shallow sea-bottom
indications of hydrocarbon seepage detected
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through piston core data, side-scan sonar, and
other scanning methods.

3. Matching of the chimneys with basin modeling,
which can predict vertical hydrocarbon migration
based on independent inputs.

4. Linking the chimneys within deep, thermally
mature sediments that contain source rock inter-
vals.

5. The chimney morphology should express a circu-
lar pockmark pattern that is characteristic of
fault-related hydrocarbon migration. This is best
evaluated on time and horizon slices. Wells
drilled through gas chimneys in the North Sea
often encounter elevated pore pressure, gas
shows, and gas wetness (Loseth et al., 2002).

If a neural network fails validation, one can
improve the neural network by improving input attri-
butes or design and include additional attributes that
capture other aspects of the data. One can also include
additional examples, especially by providing counter-
examples to the neural network at locations of false pre-
diction. Finally, as no prediction is perfect, one needs to
understand the remaining uncertainty and take this into
account during interpretation.

Application

Once the final neural network is tested and vali-
dated against key information, we can compute a 3D
volume that optimally images gas chimneys or other
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geological features (such as faults, channels, salt, etc.)
that we can recognize in the seismic data. The volume
can now be displayed in 2D and 3D views, recombined

Example of quantitative neural network predictions

Statement of the problem

Well properties can be computed from seismic
data using the result of seismic inversion such as acous-
tic impedance, elastic impedance, and shear impedance.
The standard procedure to obtain these properties is to
apply a regression of one or more inversion volumes
with a downscaled version of the well log, representing
the desired target property; e.g., a rock or fluid property.
Using a neural network has several advantages in this
work flow. In comparison to multivariate linear regres-
sion, the neural network is better suited at handling
highly correlated input data and incorporating nonlinear
trends between input and output. Note that nonlinear
relations are common in geological analysis and incor-
porating these correctly effect the output prediction
materially. In addition, neural networks can more easily
handle unrelated input volumes; for example, a neural
network having as input seismic facies attribute can
also input a two-way time (TWT) (or depth) attribute to
detect and correct depth-dependent trends in the seis-
mic facies attributes. In the example presented on
Figures 13, 14, and 15, we use the neural network to
predict a gamma ray response based on the seismic
data.
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with other information, and the interpreter can be confi-
dent he or she is looking at a specific geological feature
(Figs. 11 and 12).

Selecting the input attributes

For rock and fluid property prediction, we would
typically use multiple types of attributes:

. Geophysical inversion volumes: These contain
information about the elastic properties of the
rock material that in turn may be correlated with
target rock properties, which are valuable in pre-
dicting lithology and fluid type.

. TWT, depth, or stratigraphic attributes: TWT and
depth attributes that can capture any compaction
and pressure-related trends in the target property.
Stratigraphic attributes are horizon-based and
give the neural network an idea in which part of
the vertical section the neural network is active.

. Velocity fields from processing and pressure pre-
diction volumes: For detecting any relations
between target property and pressure or rock
velocity.

. Facies attributes: Facies attributes capture infor-
mation related to the environment of deposition
such as looking at seismic amplitude, frequency,
statistics relating to reflector continuity, and dip
relations (parallel, semi-parallel, variable). Facies
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attributes are relevant as different geological
facies may have nearly identical elastic properties
but very different geological properties. For
example, difference in grain size and grain size
distribution that are related to type of sediment
input and energy of the depositional processes
and which can be inferred from facies attributes.

In our example, we use three kinds of attributes:

1. Acoustic impedance volume and a normalized
acoustic impedance volume that is corrected for
the correlation of acoustic impedance with depth.

2. Frequency. Typically, the frequency of the seis-
mic data will change between rapid sand-shale
successions and massive sand or shale forma-
tions. Thus, this facies attribute may help the neu-
ral network to determine the sedimentary
environment.

3. Stratigraphic level: relative reference time to four
horizons that define distinct system tracts is fed
to the neural network. As each system tract will
have different processes for (re)distribution of
sediments and different sorting of grain size and
minerals, the relationship between acoustic
impedance and gamma ray will vary between
system tracts. Feeding information about the
stratigraphic level to the neural network allows it
to fine-tune acoustic impedance to gamma ray
relationships for every systems tract.
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Selecting the training data

Neural networks for log property prediction do
not require interpreters to pick training examples.
Instead, example locations are extracted along the well
path, where both seismic attributes and corresponding
well properties are sampled. Care should be taken that
data points having high noise level (such as locations in
which there is borehole breakout) are excluded from the
training data. In addition, statistical rebalancing of the
input may be necessary. In many applications, the val-
ues of maximum interest for exploration and
development (high porosity, high permeability, and
high hydrocarbon saturation) may only be a small per-
centage of the input dataset, while also exhibiting an
abnormal relation between input and output. If the
training set contains mainly nonreservoir examples,
then the neural network training will converge to a solu-
tion that predicts the large majority of the data as
accurately as possible at the expense of less frequent
examples (like those representative of reservoir zones).
Rebalancing the input dataset puts extra emphasis on
the limited amount of really interesting data. In our
example, the bulk of the dataset has gamma ray levels
around 40-60 API; however, there are values above or
below this range that are more interesting as they repre-
sent clean reservoir or better seal. Therefore, the
training dataset is rebalanced to remove points in the
main range and add points in the extremes. The latter
are copies of existing data points in which a small
amount of noise is added. The rebalance will bias the
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neural network training towards

extremes with more accuracy.

predicting the

Training the neural network, including neural net-
work validation by a random test set

The methodology for training a data-driven neu-
ral network is essentially the same as for the user-driven
neural network. An example of the neural network
training is shown in Figure 13.

Application and validation methods

Holding part of the well data back during training
for blind testing can help validate data driven neural
networks. This can be done on two scales:

First, well data may be withheld on the wells. The
comparison between the neural network’s prediction
and the real values tells how well the neural network
can predict within a well. The problem with this test is
that the points in the test set will always be geographi-
cally near and thus relatively correlated.

The second way of holding back data from the
training is to leave out entire wells from the training.
The comparison between the neural network’s predic-
tion and the withheld well data tells how well the neural
network can predict in the areas away from the wells.
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Thus, only these blind tests truly test the predic-
tive confidence of the neural network in areas away
from the wells. If a large number of wells are available,
the second method should be chosen. Finally, the output
should be inspected visually to make sure it makes geo-
logical sense.

Application

Once the final neural network is tested and vali-
dated against key information, we can compute a 3D
volume of the property of interest based on seismic
data. The volume can now be displayed in 2D and 3D
views, sliced along surfaces, recombined with other
information, and the interpreter can be confident he or
she is looking at a meaningful rock property. In addi-
tion, the results may be used in downstream
applications such as reservoir simulation. For our
example, we show the results between the two wells in
Figure 14. One of the wells is used to blind test the
results (Fig. 15). The cross-plots in Figure 15 show how
the neural network can create a fairly accurate predic-
tion of a rock property even if the correlation between
elastic rock properties derived from the seismic data
and the target property is weak. Though the final pre-
diction certainly has an error spread, most trends are
captured correctly, and the gamma ray volume is of
great benefit for planning of tasks such as infill drilling.
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Conclusions

Neural network technology is in many cases
more robust than single attribute volumes to highlight
geological features from seismic data and to predict
rock properties from seismic attributes. They have been
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Table 1. Different geological features and corresponding best-practice methods for highlight the features using seismic

attributes.

Criterion

Best method Examples

The geological target is well-defined by a single attri-
bute, or geologically precise definition of the attribute
is not very important.

An easy recombination of two or three attributes will
enhance the geological imaging to acceptable levels.

A recombination of two or three attributes will
enhance the geological imaging, but more accuracy
or control is necessary.

Data for an exact quantification (calibration) is lack-
ing; general interpretive rules are available to recom-
bine a series of attributes towards a geological
prediction.

The expression of the geological target in the seismic
data is highly variable, nonlinear or weak, and three
or more attributes or attribute parameterizations are
needed to adequately image the target.

Use a single attribute.

Use arithmetic recombination

recombine the attributes.

Use fuzzy logic and expert

neural network and self-

Amplitude, frequency, dis-
continuity, AVO gradient.

Sweetness attribute,
(F-N)*F (AVO) attribute,

of the attributes. Frequency Ratio.

Use cross-plotting to Cross-plotting of AVO

attributes.

AVO in absence of well

systems. control.
Use multivariant linear and
nonlinear methods including See Table 2.

organizing maps.

Brouwer et al.

456



Table 2. Geologic features and their corresponding best-practice multiattribute methods.

Criterion

Best method

Example

There are multiple attributes that image a geologic
target, but the relationship between the attributes is linear.

The relationship between the attributes and geologi-
cal target is complex, sometimes inconsistent, and
may involve nonlinear features such as threshold val-
ues or altering sensitivity over the range.

Use linear regression.

Use neural networks or self-
organizing maps.

Imaging of gas chimneys,
facies differences, poros-
ity prediction, including
compaction curves and
facies type attributes.

Brouwer et al.
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Figure 1. An example of the geological nonuniqueness of an attribute. The discontinuity attribute images both faults
and incised sedimentary features. To illustrate the problem, we have not added any pointers to the image in which
anomalies represent faults and incised features. Which features can be interpreted with high confidence?
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Figure 2. Side by side comparison of a discontinuity attribute (left) and a modified curvature attribute. Each attribute
images a part of the complete fault system. The red arrows indicate some points of interest, where one attribute pro-
vides additional information. Combining the different attributes would work towards a more complete image of the
fault system.
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Figure 3. Left: A biological neuron, a basic building block for the biological neural networks. Right: Inspired on the
biological neuron, the perceptron is the basic building block for artificial neural networks.
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Figure 4. Typical activation functions used in neural networks. Note especially the sigmoid activation function (c) is

widely used for perceptrons.
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Figure 5. Typical architecture of feed-forward artificial Neural Networks, such as multilayered perceptrons.
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Figure 6. Architecture of radial basis function neural network; note that compared with Figure 5 the weighting is lim-
ited between the hidden and output layer only.
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Meta-Attribute

«
»

Chimney
ANN Salt

Input Attributes:
Energy, Frequency, Similarity , Variance of Dip
Mag nitude, Variance of Dip Azimuth , Absorption,
Curvature, ..

Interpreter’s
Knowledge

Figure 8. Concept of the use of neural network s for the use of geological characterization of seismic data. The sections
are 8.3 km wide.
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Figure 9. Example picks of a neural network. The green points are locations the interpreter has classified as part of a
gas chimney; the blue points are locations the interpreter has classified as not being part of the gas chimney. Guided by
these interpreted examples, the neural network will be trained to recognize combinations of seismic attributes that are

predictive for chimney and nonchimney.
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Figure 10. Stopping criteria for a neural
network using a test set not used to
update the neural network nodes. Care-
ful monitoring of test set performance
will avoid overtraining, one of the main
pitfalls in the use of neural networks.
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Figure 11. White tones: neural network map of fault system. Green-Yellow tones: neural network map of gas chimney.
In one view, the interpreter can access the vertical leakage of hydro-carbons along a fault plane and assess vertical
charge efficiency and/or vertical fault seal risk at traps associated with the fault system.
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Figure 12. After accurate 3D mapping of geological features, they can be extracted in 3D.
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Figure 13. Neural network training window. In this window we find three measures used to control the training. The
error of training set and test set is monitored (A), a scatter plot displaying the predicted value versus actual value is
given (B) and the input nodes of the neural network together with a “temperature type” color coding representing rel-
ative weighting of the input is given (C). Based on these controls, the interpreter decides when neural network training
is completed.
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Figure 14. Predicted gamma ray and neural network together with gamma ray well logs. The right log has been used to
train the neural network (see Fig. 13). The left log has not been used in neural network training and functions as inde-

pendent validation (blind test).
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Figure 15. Cross-plots of gamma ray vs. acoustic impedance (left) and gamma ray vs. predicted gamma ray (right).
Extraction is made from the well track of the blind test location mentioned in Figure 14. It is obvious that the neural

network performs a better prediction of gamma ray than a linear correlation using acoustic impedance data alone.
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