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Summary

In this paper we present a method for transforming one, or more seismic input cubes info
one, or more 'seismic' output cubes by way of neural network mapping. Both supervised
and unsupervised learning approaches can be used to transform the data into :

1 . Segmentátion volumes: revealing 3D bodies with similar seismic response
(unsupervised approach) .

2. Class volumes : revealing 3D bodies with a specific geological or petrophysical
meaning (supervised approach) .

3. Prediction volumes: quantified petrophysical information (supervised approach) .

Networks are trained on representative sets of data points . Input can be any relevant
information (amplitude, derived attribute, spatial information) that can be supplied at
every spabal location . Information can be extracted from multiple volumes such as
reflectivity, near-offset stack, far-offset stack, gradient, intersept, acoustic impedance or
4D-difference stack. The method therefore has general applicability and is well suited for
AVO and 4D work .

Examples of segmentation, classification and prediction volume transformations will be
given.

Methodolog

y The first step in both supervised and unsupervised learning approaches is to create a
representative set of data points for training the neural network. Careful selection of
seismic (waveforms, single-trace, multi-trace) attributes is an important step in the
procedure, especially in the case of unsupervised networks .
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In the unsupervised mode data points are selected at random positions in the cube .
Attributes are extracted at these points and given to an Unsupervised Vector Quantiser
(UVQ) network . The network learns to cluster the input into a pre-defined number of
segments . Application of the network to the entire volume(s) yields two outputs at every
sample position: the segmentation result i .e . the index of the winning segment and the
match i .e . a measure of confidence in the segmentation .

In supervised volume tran sformation the training (and test) data sets are constructed from
seismic traces and corresponding log traces (Fig . 1) . A log trace is a re -sampled version
of a well log . When the seismic data is in two-way time, the log trace is converted to time
using the sonic log. In prediction experiments the resulting trace is subsequently
resampled to the seismic sampling . rate using an anti- alias filter. In class ification
experiments the target log (e.g, litho-class) has only integer readings and thus cannot be
gesampled using an anti-alias filter . In these cases the log trace is gesampled by outputting
the most frequent integer value in a window around the sample position .

Fig. 1 Example of a porosity prediction by way of neoral network mapping . The
training set is constructed from information extracted along the well track .
Input seismic trace(s) and target-well log trace (depth-to-time converted
and gesampled version of the welf log) need to be completely aligned for
optimal results. Wells can be real or simulated. To avoid stretch / squeeze
and miss-pick errors we generally prefer to use the synthetic seismic trace
instead of the measured seismic trace when using real welk . The real
seismic traces are then rescaled to the synthetic amplitudes when applying
the trained network yielding, the desired 3D porosity prediction volume .
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Log traces can be derived Erom real and/or simulated Wells . Seismic traces can be real as
well as synthetic . Ideal ly we want to train a network on real seismic trace information and
real well data. This requires that the seismic trace and the corresponding target log trace
be completely aligned over the entire target . In practice we are dealing with miss-picks
and log trace depth-time conversion problems resulting in unaligned data that cannot be
used to construct the required training and test sets .

It is common practice to solve such problems by stretching and squeezing the synthetic
seismogram in order to force a fit with the real seismic trace . Using such a 'corrected'
sonic log would be one possible way to ensure that the seismic trace and the log trace are
aligned. In that case, the miss-pick must also be updated manually. Although feasible, this
is an enormous task, which lacks theoretical support and is considered more 'fudge' than a
real solution .

A better way that automatically ensures full alignment between seismic information and
log information is by using the synthetic seismic trace instead of the real seismic trace .
The reason is that the synthetic seismic trace and the well log trace are created in exactly
the same way, hence they have the same stretch / squeeze /miss-pick errors and thus the
alignment is perfect . The trained network represents the optima) mapping from seismic
response to target log response . Before applying this trained network to the real seismic
data, we must ensure that synthetic and real seismic data are scaled in the same way . This
can be achieved by applying a linear transformation from one to the other, or vice versa .

Comparison of the predicted log response from synthetic seismic and from real seismic
with the actual target log response at the wel) locations reveals the quality of the
transformation and seismic response at wel) locations .

Examples

Examples of segmentation, classification and prediction volume transformations wil) be
given .

The first example shown in this abstract is a segmentation approach (Fig . 2) . The seismic
reflectivity data is segmented into 10 segments based on energy, trace-to-trace similarity
and frequency. Energy and trace-to-trace -similarity are computed in two different time
gates, pence yielding a UVQ network with 5 inputs . Segments correspond to stratigraphic
sequences, which can be easily separated using 3D-visualisation software .

The second example deals with a porosity prediction (Fig . 3) . The training set was
constructed Erom simulated Wells . The real Wells are used as blind test locations . A fully
connected Multi-Layer-Perceptron neural network was trained to predict porosity from 40
ms . of synthetic waveforms and Acoustic Impedance .
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Fig. 2 Segmentation example. The seismic data is segmented by a UVQ network
in 10 segments based on 5 attributes: 2energy, 2 trace-to-trace similarity
and frequency.
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Fig. 3 Prediction example . Seismic waveforms and acoustic impedance are
mapped to porasity by a fully connected Multi-Layer-Perceptron neural
network. An aróitrary 'inline from the prediction cube is shown on the
right. Ón the left the original porosity trace at one blind test veedl location
is compared witti the predicted trace from synthetic and real seismic data .
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