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Monte Carlo simulation of wells

Paul F. M. de Groot *, Albertus H. Bril *, Frans J. T. Florist, and A. Ewan Campbellt

ABSTRACT

We present a method to simulate wells, i.e., 1-D
stratigraphic profiles with attached physical properties
but without spatial information, using a combination of
geological knowledge and Monte Carlo statistics. The
simulated data is intended to be used in seismic lateral
prediction studies. Our algorithm simulates correlated
stochastic variables one by one. There are two major
advantages in this approach above the conventional way
in which all correlated stochastic vectors are drawn
simultaneously. The first advantage is that we can steer
the algorithm with rules based on geological reasoning.
The second advantage is that we can include hard
constraints for each of the stochastic variables. If a
simulated value does not satisfy these constraints, it can
simply be drawn again.

The input to the simulation algorithm consists of
geological rules, probability density functions, corre-

INTRODUCTION

The simulation of realistic synthetic reflection sequences or
of lithological sequences has been studied by many workers
because of the potential benefit in seismic reservoir characteri-
sation applications and in testing new processing algorithms
(Sherrif, 1992). For example, Walden and Hosken (1986),
Walden (1993) and Kerner and Harris (1994) simulate stochas-
tic models for reflection coefficients with auto-regressive-
moving-average (ARMA) processes and non-Gaussian distri-
bution functions and used parameter sets derived from real
logs. Barnes and Tarantola (1993) simulate pseudorandom
lithological images that follow the statistical distribution of the
geological sequences and shapes shown by one or several
images of the subsurface considered as reference model. Our
approach differs from these methods in that we simulate 1-D
stratigraphic profiles (de Groot, 1995a) with attached physical
properties (but without spatial information) by a combination

lations, and hard constraints for the stochastic vari-
ables. The variables are attached to the entities of a
generic integration framework, which consists of
acoustic-stratigraphic units organized at three scale
levels. The simulation algorithm constructs individual
wells by selecting entities from the framework. The
order in which the entities occur, and the thickness
of each entity, is determined by a combination of
random draws and specified geological rules. Acoustic
properties and optional user-defined physical proper-
ties are attached to the simulated layers by random
draws. The acoustic properties are parameterized by
top and bottom sonic and density values. The algo-
rithm is capable of simulating acoustic hydrocarbon
effects.

The algorithm is demonstrated with a simulated ex-
ample, describing the stratigraphic and physical varia-
tions in an oil field with a fluvial-deltaic labyrinth type
reservoir.

of geological reasoning and Monte Carlo statistics. Our algo-
rithm has some similarities with Markov chain models (e.g.,
Sinhval and Sinhval, 1992). In Markov chains, stratigraphic
sequences are simulated using probabilities that a series of
lithologies follow each other in a predictable pattern. In our
simulation algorithm, the predictable patterns are captured in
terms of geology-related rules and constraints attached to the
entities of a generic integration framework. The stochastic
information is supplied in the form of probability density
functions (pdfs) and correlation-coefficients.

The Monte Carlo method is a procedure that involves
sampling based on probabilities to approximate the solution of
mathematical or physical problems in a statistical way. Monte
Carlo statistics are used for a variety of different problems. In
geoscientific applications, the method is used, e.g., for reserves
estimations and for prospect evaluations. In cases where the
stochastic vectors are correlated, the simulation is not straight-
forward because the variables cannot be drawn independently.
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The conventional way, assuming multivariate normal distribu-
tions, is to transform the correlated system into an indepen-
dent system where the transformed stochastic vectors can be
simulated. Inverse transformation then yields the correlated
stochastic vectors. A major disadvantage of this approach, is
however, vectors are simulated rather than variables. The
simulation of entire vectors implies that the procedure is
difficult to combine with rules and constraints. In other words,
additional geological knowledge cannot be incorporated into
the simulation. Instead, our algorithm simulates correlated
variables one at the time. Therefore, we are able to determine
at any time, whether a variable must be simulated and which
constraints should be satisfied (de Groot et al., 1993). For
example, it is possible to simulate a package consisting of sand
and shale layers. The sand and shale layers have different
probabilities to be selected, hence we can generate sand-prone
and shale-prone packages. First a thickness is simulated for the
package. Subsequently the package is filled with sands and
shales with varying thicknesses and varying physical properties
such as sonic values, density values, and user-defined proper-
ties. Each variable (sand thickness, sonic, density, etc.) can be
correlated with any other variable; e.g., sonic and density
distributions are often correlated negatively, thicknesses might
be correlated to simulate pinch-outs, etc. Each simulated value
honors the correlations and is evaluated against the constraints
before it is accepted.

In this article, we describe how this algorithm is used to
simulate realistic wells; i.e., 1-D stratigraphic profiles with
attached physical properties but without spatial information.
The mathematics is explained in the Appendix. The simulated
sonic and density log responses of these wells can be used to
synthesize seismic traces for geophysical reservoir character-
ization purposes, (de Groot, 1995b).

SIMULATING WELLS

The aim of the simulation is to generate a set of wells that
are representative of the variations in stratigraphy and physical
properties of the target interval. When used for reservoir
characterization, the acoustic properties of these simulated
wells are used to synthesize seismic traces that are subse-
quently analyzed or inverted back to the original well proper-
ties. For this reason, it is important that the physical properties
of the wells are related directly to meaningful geological
entities. The wells are therefore constructed from acoustic-
stratigraphic entities that relate physical well properties to
geology. The acoustic-stratigraphic entities are defined in a
generic integration framework.

INTEGRATION FRAMEWORK

The generic integration framework, defines acoustic-strati-
graphic entities at three scale levels. An example is given in
Table 1. We will refer to these entities as: units, subunits, and
lithologies. To facilitate data management and lithological and
stratigraphic addressing, each entity in the framework is given
a user-specified code. Acoustic entities in simulated wells can
be recognized by these codes. If a code occurs more than once
in a particular well, an occurrence number is added by the
system. This provides a unique identification for each entity in
the wells. To handle hydrocarbon properties in the system, a
rock type is assigned to each of the framework lithologies. We
distinguish seals, waste, and reservoir rock types. Seals are
used by the simulation algorithm to simulate gross hydrocar-
bon columns. Reservoir rocks can have a fluid content. Sepa-
rate acoustic probability density functions can be specified for
each fluid-fill. Waste zones are nonsealing, noneconomic
lithologies used to calculate net pay zones.

Table 1. Integration framework defining the acoustic -stratigraphic entities of the target interval.

Unit Facies Lithology Type Code

Carbonate A Carbonate Carbonate Waste crba.crb.crb
Shale Waste crba.crb.shl

Carbonate B Massive Anhydrite Waste crbb.msv.anh
Carbonate Waste crbb.msv.crb

Anhydrite Anhydrite Waste crbb.anh.anh
Carbonate Waste crbb.anh.crb
Shale Waste crbb.anh.shl

Alternating Carbonate Waste crbb.alt.crb
Shale Waste crbb.alt.shl

Seal Seal Seal Seal seal.seal.seal

Reservoir Massive Type 3 Type 3 Sand Reservoir res.mt3.t3s
Silt/Shale Waste res.mt3.slt

Massive Type 2 Type 2 Sand Reservoir res.mt2.t2s
Silt/Shale Waste res.mt2.slt

Massive SiltShale Silt/Shale Reservoir res.msl.slt
Type 2 or 3 Sand Waste res.msl.snd

Laminated Type 2 or 3 Sand Reservoir res.lam.snd
Silt/Shale Waste res.lam.slt

Palaeozoic Marine Shale Waste pal.mar.shl
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The simulation algorithm

Input to the simulation algorithm is a combination of
stochastic information and geological knowledge. It is consid-
ered important that simulated models are realistic representa-
tions of the subsurface. This implies that the simulation must
be controlled by geological reasoning and that unrealistic
stochastic realizations can be redrawn. In our simulation
algorithm, the predictable patterns are captured in terms of
geology-related rules and constraints attached to the entities of
the defined integration framework. The rules will be explained
later.

Two types of constraints are used by the algorithm: simula-
tion constraints and hard constraints. Simulation constraints
are a special kind of geology-related rules. They determine the
probability of a framework entity to be used in the construction
of a well. These will be explained in more detail later. Hard
constraints are constraints set on the upper and lower bound-
ary of probability density functions (pdfs). Stochastic realiza-
tions are evaluated against these boundaries. If the hard
constraints are not satisfied, a variable can either be drawn
again or accepted.

To deal with the uncertainty, stochastic input is supplied in
the form of pdfs and correlation coefficients. Pdfs and corre-
lation coefficients are, in practice, determined from factual well
data. For this purpose our software system (named geoProbe;
predecessor of a commercial system named dgB-GDI) offers
a well data analysis module. The information derived from
factual data may be modified in the simulation to reflect
geological probabilities of areas not penetrated by the drill-bit.

The simulation algorithm requires the following input to be
specified:

1) Pdfs for each of the physical properties: thickness of
geological entity, sonic and density at the top of each
lithology.

2) Hard constraints on the upper and lower boundary of the
pdfs.

3) Correlation coefficients between pairs of stochastic vari-
ables.

4) Geology-related rules. The following rules have been
implemented in the geoProbe system: xor, sum, iterate,
relative. The last three rules have two versions: one in
which the smaller scale entities are selected in a random
order and one in which they are selected in the order in
which they have been defined in the framework.

These rules are best explained with an example. We will
describe the simulation of the Massive Type 3 sub-unit of the
framework of Table 1 as follows.

Attaching the xor rule to the Massive Type 3 sub-unit means
that Type 3 Sand and Silt/Shale are mutually exclusive. The
thickness of the Massive Type 3 sub-unit is simulated from the
defined pdf. The thickness of the selected lithology is made
equal to the simulated Massive Type 3 sub-unit thickness. The
xor rule supports an optional parameter to indicate the prob-
ability for a smaller scale entity to be selected. For example xor
40/60 denotes that Type 3 Sand has a 40% chance to be
selected against a 60% chance for Silt/Shale.

Attaching the sum rule to the Massive Type 3 sub-unit
means that the sub-unit is constructed from one Type 3 Sand
and one Silt/Shale lithology. The thickness of the Massive Type

3 sub-unit is the sum of the simulated thicknesses of Type 3
Sand and Silt/Shale.

Attaching the iterate rule to the Massive Type 3 sub-unit
means that the sub-unit is constructed from as many Type 3
Sands and Silt/Shale lithologies as are required to fill the
simulated sub-unit thickness. First a thickness for the sub-unit
is simulated from the defined pdf. Subsequently, lithologies
Type 3 Sand and Silt/Shale are selected and thicknesses for
these are simulated from their respective pdfs. This process is
continued until the sum of the lithology thicknesses exceeds
the simulated sub-unit thickness. The thickness of the last
selected lithology is adjusted accordingly.

Attaching the relative rule to the Massive Type 3 sub-unit
means that the sub-unit contains one Type 3 Sand and one
Silt/Shale lithology while the thickness-ratio is maintained in
the final realization. The thicknesses of the simulated litholo-
gies are adjusted (stretched or squeezed) to fit the simulated
thickness of the Massive Type 3 sub-unit. In other words, the
relative thickness (or thickness-ratio) is kept constant.

5) Simulation constraints. The following rules have been
implemented in the geoProbe system: presence, genera-
tion, occurrence.

These constraints are used in combination with the geology-
related rules explained above. To illustrate these constraints
we will again describe the simulation of the Massive Type
3 sub-unit (Table 1).

The presence constraint operates on the full simulation data
set. It denotes that the entity can be present in a percentage of
the simulated wells only. A 60% presence attached to the
Massive Type 3 sub-unit means that only 60% of the simulated
wells comprize the Massive Type 3 sub-unit.

The generation constraint indicates the probability of an
entity to be selected. An 80% generation attached to Type 3
Sand and a 20% generation attached to Silt/Shale, in combi-
nation with the iterate rule attached to the Massive Type
3 sub-unit indicates that the sub-unit will be sand-prone.

The occurrence constraint operates on a well-by-well basis.
It denotes the number of occurrences of the entity per well. An
occurrence of 2 attached to Type 3 Sand, in combination with
the iterate rule attached to the Massive Type 3 sub-unit
indicates that only 2 Type 3 Sand lithologies can be selected to
fill the sub-unit.

Additional input to the simulation algorithm can be speci-
fied optionally in the form of:

1) Pdfs for sonic and density at the bottom of each lithology
to simulate linear trends as a function of depth over an
interval.

2) Pdfs for gross hydrocarbon column lengths.
3) Pdfs for hydrocarbon filled sonic and density variables at

the top of each reservoir lithology.
4) Pdfs for hydrocarbon filled sonic and density variables at

the bottom of each reservoir lithology.
5) Pdfs for user-defined variables.

A combination of rules, constraints, and correlations is used
to control the simulation. Various stratigraphic settings can be
simulated in this way. An example of what can be done with
these input specifications is presented here.
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The statistical description of the simulation algorithm is
given in the Appendix. A theorem is given for drawing a value
for a variable that is correlated to another variable already
drawn, e.g., drawing a sonic given a density value. This theorem
requires a full correlation matrix, which is, in general, not
supplied by the user. Therefore a second theorem provides
a method for filling missing elements of the correlation ma-
trix. An example is given to illustrate how the correlation
matrix is filled and how a set of values for correlated variables
is drawn.

Example

The simulation algorithm is applied to a simulated oil field.
To make the simulation as realistic as possible, the field is
modeled after an existing oil field in the Middle East. The trap
is a structural dome with a parasitic structure on the limb of a
monocline. The reservoir is an Upper Carboniferous to Lower
Permian fluvial/fan assemblage sitting unconformably on Silu-
rian marine shales. The reservoir formation is in turn covered
conformably by Upper Permian carbonates. The field can be
considered a labyrinth of interconnecting and isolated reser-
voir bodies. Oil production rate is primarily a function of
reservoir development. Considerable volumes of oil can be
produced from relatively thin (10-25') sandstone intervals.
The reservoir formation deposits are predominantly floodplain
and playa lake deposits with reduced sand/shale ratios. There
are no laterally correlatable horizons within the reservoir
formation, but the top reservoir can be mapped on seismic
data. Figure 1 shows a hypothetical cross-section through the
crest of the structure.

An integration framework was established for the simulated
field based on the major structural elements and sedimentol-
ogy. Integration sub-unit subdivisions and lithology typing
were derived from analysis of well data and formation analysis
logs of the real field. The framework for this example is defined
as follows (Table 1):

1) There are four main units. Each unit has one or several
sub-units (geological or seismic). Each sub-unit has one
or several lithologies. The fourth column shows the
user-defined codes that enable the user to identify and
manipulate data items at three scale levels.

2) The four main units occur sequentially as shown in the
framework. Sub-units within the carbonate units occur
sequentially while sub-units within the reservoir can vary.
The reservoir unit has been divided into four sub-units:
Massive Type 3, Massive Type 2, Massive Silt-Shale, and
Laminated. This subdivision is based on common group-
ing of certain lithologies observed in the Formation
Analysis logs and corresponds to the genetic units of the
formation. In individual wells, the sub-units order may
vary. Sub-unit could be completely absent or present
multiple times.

3) Each sub-unit is assigned several lithologies. The litho-
logical composition of an interval determines a particular
sub-unit type. Type 3 sandstones, for example, can only
occur in Massive Type 3 sub-unit or Laminated sub-unit
while Type 2 sandstones will only be found in Laminated
or Massive Type 2. Lithologies could occur in any order,
repeat themselves, or be completely absent.

FIG. 1. Hypothetical cross-section through the simulated oil-field. Within this fluvial-deltaic setting our
algorithm will simulate one-dimensional stratigraphic profiles with attached physical properties but without
spatial information.
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4) Oil-bearing sands occur only in the reservoir unit. Essen-
tially, all sand lithologies, regardless of which sub-unit
they belong to, are considered to be producing if they
occur within the oil column. The fine grained nonproduc-
ing sandstones, silts, and shales were grouped into one
lithotype (Silt/Shale) for the purposes of this study and
are considered waste zones.

5) There is only one hydrocarbon column, which is attached
to the overlying seal at the base of the carbonate unit.

The geoProbe system recognizes hydrocarbon columns by
the seal to which the column has been attached. If the lithology
of the layer directly overlying the reservoir can vary, as in this
case, geoProbe has a problem. For this reason a virtual seal has
been introduced immediately above the reservoir unit. In the
simulations this seal is given a constant thickness of 0.1 foot.
Based on factual well data and knowledge about the geological
setting, a decision was made to feed the simulation algorithm
with the following information:

FIG. 2. Fifty wells, i.e. 50 different one-dimensional strati-
graphic profiles with attached physical properties but without
spatial information have been simulated. The acoustic proper-
ties of these wells were used to generate (a) impedance logs,
which in turn were used to create (b) synthetic seismograms
using a (c) 30 Hz Ricker wavelet.
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1) The random iterate rule for Carbonate B unit, Reservoir
unit and each of the facies.

2) The sum sequential rule for Carbonate A, Seal and
Palaeozoic units.

3) Pdfs for thicknesses of all framework entities, for gross
oil column thickness, for sonic and density of each
lithology, for sonic and density of oil filled reservoir
lithologies.

4) Correlations for sonic and density and for sonic of
oil-filled and sonic of brine-filled reservoir lithologies to
reflect that porefill is independent of rock properties.

5) A hard constraint for the minimum and maximum oil
column length and minimum and maximum thickness of
the Reservoir unit. Values were redrawn until these
constraints were met.

6) Generation constraints for the reservoir lithologies to
control the sand/silt ratio's of the various facies entities.

The simulation algorithm was used to simulate 50 wells, i.e.,
50 different 1-D stratigraphic profiles with attached physical
properties but without spatial information. Each of the wells is
fully described in terms of integration framework entities. The
acoustic properties of the wells were used to create reflectivity
logs. These were converted into synthetic seismograms by
depth-time conversion, anti-alias filtering to 2 ms and convo-
lution with a 30 Hz Ricker wavelet. The acoustic logs with
corresponding synthetic seismograms are shown in Figure 2.
Please note the vertical scale differences between impedance
logs and synthetic seismic response. When using these data for
reservoir characterization, the seismic responses are analyzed,
or inverted back, to the underlying well properties (de Groot,
1995b).

CONCLUSIONS

It has been shown that wells, i.e. 1-D stratigraphic profiles
with attached physical properties but without spatial informa-
tion can be realistically simulated by combining Monte Carlo
statistics with geology-related rules, correlations and con-
straints. This combination is possible because we are able to
draw correlated variables one by one. Our algorithm operates
on an integration framework that defines acoustic-stratigraphic

entities of the target interval at three scale levels. Simulated
wells are constructed from framework entities and attached
physical properties. The simulated data set can be used
subsequently to investigate relations between seismic response
and well properties for seismic lateral prediction purposes, (de
Groot, 1995b).
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APPENDIX

MONTE CARLO STATISTICS; SIMULATING CORRELATED MULTIVARIATE STOCHASTIC VARIABLES

The following mathematical description is used in a simula-
tion algorithm aimed at simulating wells, i.e., 1D-stratigraphic
profiles with attached physical properties. In the algorithm,
wells are constructed from so-called integration framework
entities. These entities are grouped at three different scale
levels. It is considered important that geological knowledge
controls the selection of framework entities and that unrealis-
tic realizations of variables can be redrawn. This implies that
wells must be constructed one-by-one, entity-by-entity, and
variable-by-variable.

Variables in a computer are simulated using a (pseudo-)
random number generator. When random variables are corre-
lated, it is not simple, however, to simulate random draws using
such a (pseudo-) random number generator. This is especially

true when the variables must be drawn one-by-one, as in our
application. The realizations of previously drawn variables will
in that case influence the realization of the variable to be
drawn. For example, let us assume that a positive correlation
exists between the thicknesses of two layers. When a small
thickness is drawn for the first layer, then also for the second
layer a small thickness must be drawn. In the case of normally
distributed random variables, it is possible to draw the vari-
ables consecutively from the marginal distributions. Each time
a variable is to be drawn, its marginal distribution must first be
updated for the variables already drawn to which it is corre-
lated.

In the following discussion X is a stochastic vector. In our
algorithm, X comprizes all stochastic variables required for the
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simulation. A component of X is denoted by X 1 . Examples of
components are sonic, density, thickness, and user-defined
variables attached to framework entities. Each component X 1

is assumed to be normally distributed with expectation p, and
variance o, symbolically written as: X1 — N(p , Cr?). The
vector of expectation will be denoted µ. The components are
assumed to be correlated. The covariance between compo-
nents i and j is indicated by o,,. Note, that the covariance
between component i and itself, cr equals o. The matrix of
covariances will be denoted as 1. When the covariance r is
normalized with the standard deviations r and Q 1 , we obtain
the correlation coefficient p1, symbolically written as: p ig =
Q^j /(Q 1 if ). The matrix of correlation coefficients will be
denoted by C. Sets of components can be grouped into
subvectors of X denoted by X ( ` ) . An example of a subvector
X ( ` ) is that part of stochastic vector X comprising correlated
thicknesses of a set of layers. The theorems given hereafter
apply to the general case of drawing entire subvectors. How-
ever, for design reasons, the variables are drawn one-by-one in
the final implementation of the algorithm. In other words the
subvector X ( ` ) to be drawn has only one component. This is
illustrated by the example at the end of this Appendix.

We require two theorems for our algorithm to work. Theo-
rem A-1 is used for updating the expectation and covariance
matrix of a variable to be drawn, given some already drawn
correlated variables (Mardia, 1979). This theorem requires the
covariance matrix to be specified completely. In general, the
user will not be in a position to specify all coefficients.
Therefore, the unspecified correlation coefficients must be
approximated first. This is accomplished with Theorem A-2
(A. M. H. Meeuwissen and R. H. Cooke, personal communi-
cation).

In the following discussion, first the two theorems are given
followed by an illustration of their use with an example.

Theorem A-1

First we introduce some notation. Let X be an n-dimen-
sional stochastic vector that is partitioned as follows:

x (1) \
X = X (2),	 (A-1)

with expectation E[X] equal to µ:

µ (1)µ = E[X] _l\ µ (2) ) ,	 (A-2)

and a positive definite covariance matrix Cov(X) given by

Y.=Cov(X)=(Ill 
112

22)

	
(A-3)

21 1

Suppose X is multivariate normally distributed with expecta-
tion p. and covariance matrix 1, which can be symbolically
written as

X -^ MVN(µ, 1).	 (A-4)

Here, — denotes "is distributed as" and MVN indicates
multivariate normally distributed. Then the conditional distri-
bution of X (i) given a realization x (2) of X (2) is multivariate
normally distributed with expectation

M (') = µ
(l)

	12 221(x(2) — µ (2)),	 (A-5)

where µ (l) is the updated expectation. The updated covariance
matrix 1 11 is given by

11 =Iii — 1 12I22^ 21.	 (A-6)

Theorem A-2

Suppose X l , X2 , and X3 are correlated random variables
that satisfy

E[X 1 IX 2 =x 2 ]	 is linearinx 2i 	(A-7)

and

E[X11X3 =x 3 ]	 is linearinx 3 .	 (A-8)

Then, given the correlation coefficients P 12 between the pairs
X 1 and X2 and P13 between X 1 and X3 , the correlation
coefficient P 23 is given by

P23 = P12P13•	 (A-9)

The conditions in the theorem imply, say for X 1 , X2 , that
given a realization x 2 of variable X2 , the expectation of X 1

shifts linearly towards x 2 . For normal distributions this is
always satisfied, as can be seen from theorem A-1, equation
(A-5).

Although this theorem applies to three variables with one
missing correlation coefficient only, we are also going to use it,
without strict theoretical justification, for more than three
variables where several correlation coefficients may be missing.
We must note here, that, for more then three correlated
variables, the positive definiteness of the covariance matrix
may be violated by this procedure. In practice, we have seen
this happen only in rare cases.

The following example illustrates the use of these theorems.
Suppose the correlation matrix has been specified for five
variables as follows:

In this particular example, P24, P35, and P 45 are known
coefficients and P34, P25, and P 23 are unknown, which is
indicated in the matrix by the * symbol. Using equation (A-9),
we can determine two of the unspecified correlation coeffi-
cients.

P34 = P35P54 = 0.24,	 (A-ll)

and

P25 = P24P45 = 0.32. 	 (A-12)

However, P 23 cannot be determined by the combination of two
of the given correlation coefficients. In a second step, we can
approximate P 23 using the correlation coefficients determined
previously:

P23 = P24P43,	 (A-13)

which can be expanded using equation (A-11) to

P23 = P24P35P54 = 0.192• 	 (A-14)

Note, that we could also have used
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	P23 = P25P53 = P24P45P53-	 (A-15)

In this particular case, the same value for P 23 will be obtained
for equations (A-14) and (A-15). In general, however the
approximation is not unique. If several combinations are
possible, when the number of initially specified correlation
coefficients differs, then a selection is made from the combi-
nations with the least number of initial coefficients. From these
we arbitrarily choose one of the possible combinations. Thus, if
in a different example, P23, P34, P35, P45, would have been
specified, then we could obtain P 25 , either from

	P25 - P23P35,	 (A-16)

or from

P25 = P23P34P45•	 (A-17)

The former expression is favored because it contains less
specified correlation coefficients. With respect to the approxi-
mate nature of the procedure, we emphasize that after multi-
plying correlation coefficients, the resulting number comes
closer and closer to zero. Therefore, the effect of the resulting
approximation of the correlation coefficient decreases rapidly.
Hence, we argue that making an error in the approximation
has little effect when many terms are involved.

After application of the above procedure, the correlation
matrix of equation (A-10) can be approximated by

1	 0	 0	 0	 0
0	 1	 0.192	 0.8	 0.32

	

= 0 0.192	 1	 0.24 0.6 .	 (A-18)
0	 0.8	 0.24	 1	 0.4
0	 0.32	 0.6	 0.4	 1

We can now draw samples for all variables. Suppose we
would like to draw them in the order X3 , X5 ,  X 1 , X2 ,  X4 .
When selecting X3 , no other variable has been drawn, so we
can simply draw it from its marginal probability density func-

tion X 3 — N(µ 3 , o 3 ). Now X5 must be drawn, conditioned
on the x 3 value. Using theorem A-1, we find

	P5 - 115 +Q35(Q3) -' (x3 - 113),	 (A-19)

and

2
9

2	 2 -1
	QS =0 5 - 35(Q3) 0-53,	

( 
A-20

)

where

9 35 = P35Q3Q5,	 (A-21)

is the covariance between X3 and X5 . Now X5 can be drawn
from N(11 5 , ds )•

Now X 1 is to be drawn. Since it is independent of X2 ,  X3 ,
X4 , and X5 it can be drawn from its marginal distribution
N(11 1 , o). Finally, for X2 and X4 we use

if	 (135 1
	x3	 113 	(	 )11 2 = 112 + [0-230-25]I	

Q2	 ^x5 - ^1 5^'	
A-22

	0 -2 = 0-2 - [a230-25] L Q35 
0-35

J 1 [ 0-25 ] ,	 (A-23)

and

	QZ 0-23 0-25	 x2 - µ2
2	II

µ4 = 114 + [ if 24 0-34 0-54] 0-23	 0-3	 0-35 	x3 - 11 3 ,

	0 -25 0 35	 Qs	 x5 - 115 ]

(A-24)
2i

('2	 (123 	 Q 25	 Cr 24

	0-4 - 0-4 - [ 0-24 0 -19 24 9 34 (T541 0-23	 0-3	 0-35 	1 0-34 1 ,
	2 1	 II

	

[0-25 	 0- 35	 0-5 J	 L 0- J 54

(A-25)
respectively. This allows us to draw the variables one by one in
any order. Also, we can redraw any one of the variables when
needed, and condition on the latest drawn value for each of the
correlated variables.
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