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Abstract

This paper describes recent experiences with the seismic object detection method developed by
Meldahl et al. (1998 and 1999).  In this patent pending method supervised or unsupervised neural
networks are used to transform multiple ‘directive’ attributes into ‘object probability’ classes.
The method is used a/o to detect seismic chimneys and faults (Heggland et al., 1999 and 2000).
Selection of attributes is a crucial step in the procedure, especially in the unsupervised mode. In
this paper we discuss methods and criteria to optimize the attribute selection process.
Furthermore, we compare single-attribute interpretation versus the multi-attribute neural network
approach and we conclude that the latter method is superior for seismic object detection
purposes.

Introduction

Seismic objects are spatial elements with an observable size and orientation with a seismic
response that differs from the surrounding response. Objects can be solid in which case the
internal texture differs, or they are two-dimensional features characterized by a break in the
response. Many workers use attributes to better visualize and interpret objects. Often the
interpreter extracts multiple attributes, which immediately causes two interpretation problems:

1) the object is not uniquely defined by any of the extracted attributes and

2) attributes do not discriminate between objects of different geological origin.

The method promoted by Meldahl et.al. solves both problems by re-combining extracted
attributes using neural network technology. Two learning approaches are used: supervised and
unsupervised. In unsupervised mode the network segments (clusters) given attributes into a user-
defined number of segments. The network is trained on a representative sub-set of data points,
typically attributes extracted at a regularly sampled 3D grid. Application of the trained network
yields a clustered seismic response cube. It remains the interpreter’s task to determine what these
clusters mean in terms of geological or petro-physical variations. The choice of input attributes
determines the result, as different attribute assemblies yield different output clusters. Also in
supervised mode the attribute assembly is important but here it merely affects the quality of the
result and not the meaning. In supervised mode a neural network is trained on data points
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selected by the user to classify the response into two classes: object or non-object. Application of
the trained network yields an ‘object probability’ cube.

Figure 1 shows one line from a neural network generated probability cube. In this case the
network recombined nineteen attributes to predict the probability of the seismic position to
belong to a seismic chimney. One of the attributes contributing to this result is a trace-to-trace
similarity calculation. The single attribute result is shown in the same Figure for comparison. It
shows that the neural network improved the chimney definition and was able to distinguish
between chimneys and other objects with low similarity such as faults and low coherent
reflective sequences.

Attribute selection

Attribute selection is based on experience, common sense, the directivity principle and statistical
support tools. Years of experimentation at dGB and Statoil led to a whole range of new attributes
and attribute assemblies that are known to be effective for detection of chimneys, faults and
other objects of interest. Much work was done in a trial and error mode guided by common
sense. Most new attributes and attribute assemblies follow the directive principle, which states
that information is optimal along the direction of the object of interest. Processing, filtering and
attribute extraction should therefore ideally be done along the user-defined, or data-driven
direction. For example seismic chimneys are vertical disturbances of the seismic response. To
decide whether or not a position belongs to a chimney we should also look above and below the
current position. In other words attributes extracted in vertically aligned windows ought to be
similar if the position is a chimney. This concept allows the network of Fig. 1 to distinguish
between vertical disturbances and other local disturbances. The directivity principle is not only
utilized in the alignment of attribute extraction windows. Also the extraction window itself can
follow the object of interest. For example the similarity attribute, which calculates the
normalized Euclidean distance between two or more trace segments is much better defined if the
trace segments belong to the same seismic event. This requires knowledge of the local dip and
azimuth, which can be calculated a/o with a sliding 3D kf-transform (Tingdahl, 1999). Dip
information opens a whole category of powerful directive attributes that are calculated in data-
driven shapes such as ‘warped’ disks, cubes or cylinders.

Taking into account that most attributes can be calculated with different parameter settings it is
thus possible to calculate an almost infinite number of attributes. Most attributes will be highly
correlated and therefore increasing the number of attributes generally does not increase the
quality of the results. In practice we have enough training examples to worry about random
correlation between attributes and objects of interest. So increasing the number of attributes will
neither deteriorate the quality of the results. However, processing time will increase and may
reach unacceptable limits. Therefore, in supervised mode it is good practice to compute a co-
variance matrix between all selected attributes of the training set and the target variables (object
or non-object, represented by the values one and zero). The final attribute assembly is based on
this output and taking into consideration processing time constraints.

Conclusions

Seismic objects can be more clearly defined if the detection is based on multiple attributes that
were combined by a neural network to ‘probability classes’. In this process the choice of input
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attributes and the use of directivity is of crucial importance. A co-variance matrix between
selected attributes and target variables of the training set may help to define the attribute
assembly in the case of supervised learning.
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Figure 1.  Comparison of standard seismic (left), single-attribute
‘similarity’section (middle) and neural network detected chimneys (right).


