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Introduction 
 
With the proliferation of 3D seismic data, and the reduced computational costs of prestack data processing, 
exploration and exploitation methods in mature basins such as the Gulf of Mexico are essentially now a 
function of economic bencRPIrks and known reservoir analogy comparisons. 
 
Given sufficient high fidelity seismic coverage over reservoirs of equivalent geology and contemporary 
environment, seismic characteristics are compared and reservoir description inferred.  For low acoustic 
impedance hydrocarbon-saturated sands encased in shales, amplitude strength and phase characteristics 
often are diagnostic. In addition to these two "basic" seismic attributes, inexpensive computing costs have 
resulted in prestack attributes that are now used in conjunction with the standard direct hydrocarbon 
indicators. 
   
With the availability of multiple seismic attributes, the ability to use a multi-attribute approach such as 
multi-attribute multi-linear regression or neural network techniques is advocated.  In recent years, various 
publications and presentations have shown that conditioned neural networks can improve seismic reservoir 
description.  Hampson, et. al, (2001) demonstrates the conditioning of seismic data to predict log properties.  
Ross (2002) improved AVO resolution using Vp/Vs well log data to condition seismic AVO attributes with 
neural networks.  In these two publications, abundant well data was available.  This is not always the case, 
especially in mature basins with wells prior to modern logging tools.  In these instances training of seismic 
data comes from geoscience teams and their experience in the area.   
 
A multi-attribute approach has been demonstrated for chimney detection by Aminzadeh, et al. (2002) and 
by others, and is extended in this article for reservoir prediction with AVO attributes.   
 
Description of neural network technique 
 
We follow the “meta-attribute” concept of Aminzadeh et al. (2002) and Aminzadeh and de Groot (2004). 
Essentially, it is  preferential selection of set of attributes that when combined through a neural network 
with proper training, using interpreter’s insight.  The result is a single, direct and optimized meta attribute 
for a specific geologic object, for reservoir property (e.g. salt, gas chimneys, reservoir quality sands, fluid 
factor, etc…)   
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Abstract 

Risk assessment for hydrocarbon-saturated reservoirs can be improved using neural network classification 
methods when combined with interpreter's knowledge.  Training data selected over background events 
and known hydrocarbon deposits permits calibration of untested reservoirs, which in turn improves the 
pre-drill prediction process as well as the range of possible outcomes, thus providing a measure of the 
uncertainty.  The Gulf of Mexico examples presented here demonstrate the potential for improved 
reservoir assessment and exploration risk reduction with the aforementioned technique. 
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A generalized workflow of the approach is highlighted in Figure 1.  This method is similar to the 
conventional neural network-based method with the important addition of the “Interpreter’s Knowledge” 
box.  The main advantage of this approach is the versatility in the training process. For example, let us 
assume the focus of the interpretation work is to highlight areas with higher probability of hydrocarbon 
accumulation. We wiil refer to this as Reservoir Probability Index or RPI.. Step one is to examine the data 
set and identify areas to be known or likely areas with hydrocarbon (from well data or interpreter’s insight).  
Such points are identified by an (x) in Figure 1. We also identify representative areas, which are unlikely to 
have hydrocarbon.  Those points are shown by a (o).  
 

 
Figure 1:  Generalized work flow 

 
In step two, which encompasses attribute calculations, training, testing, and an implicit non-linear 
transformation of all the pre-stack attributes is created termed the “Hydrocarbon Meta-Attribute”.  In an 
ideal situation, the Hydrocarbon meta-attribute should highlight only those areas within the 3-D volume 
that correspond to hydrocarbon-bearing reservoirs and nothing else.  Practically, we are creating a “ 
Reservoir Probability Index” or RPI volume with large probability values associated with those areas that 
have closer to overall “likeness” to the non-linear combination of attributes represented by the “known” or 
interpreted hydrocarbon bearing reservoirs.  It has to be emphasized that since several partial stack volumes 
of data are input to the neural network, the entire set of pre-tack attributes, including those related to AVO 
are implicitly used in the training.  Thus, this approach can be considered as a generalized AVO inversion 
approach. 
 
Data Examples 
 
Based on a meta attribute approach that combines interpreter's knowledge and capabilities of a neural 
network as described above, two tests are presented here. The first one uses the full and partial stacked data 
volumes (test A). The second one uses the full stack and various AVO attributes (test B).  Figure 2 shows a 
horizon slice through the full stack seismic volume over a known producing reservoir.  The gas/oil reservoir 
varies in gross thickness from 3 to 25 m, and has been penetrated by approximately 10 wells.  The 
amplitude strength of the reservoir is sufficiently stronger than the surrounding background media, which 
classifies the seismic response as a bright spot.  Displayed on top of the slice are training points within and 
outside of the bright spot.  These are the training points used as input into the neural network.  As described 
above, attributes and computations from these attributes are sampled at the classified points and used for 
training a neural network.  For each test, an RPI was computed and redisplayed as a horizon slice to 
establish control and validation.   Figure 3a shows the result using the partial stacks (Test A), and Figure 3b 
shows the results using various AVO attributes (Test B).  
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Figure 2:  Full stack horizon slice showing the DHI extent (green) and selected training Data  

 

 
                          a                                                                                                   b 
Figure 3:  a,Validation of Test A, b,Validation of Test B,  higher RPI denoted by orange color  
 
Results from both Tests A and B indicate the training sets selected were adequate, and the validation of the 
RPIs is acceptable.  While both RPIs are similar to each other as well as the inferred hydrocarbon extent of 
the DHI, there are some differences.  In particular uniformity of the Test B RPI over the known 
hydrocarbons (just below the major fault and to the far right), and the diminished down-dip, inter-slope 
anomalies that are hard to explain geologically are better portrayed than in the RPI slice from Test A.  
While there are no penetrations in the down dip amplitude anomalies, the RPI using AVO attributes 
presents this anomaly as a less likely commercial reservoir.  Both RPIs are similar in that definition of the 
trained pay/non-pay interface, and the separate hydrocarbon compartment to the left of the training points.  
With the testing and validation phase satisfied, the meta-attribute transform for Test B was then applied to a 
second producing reservoir horizon using only the training points from first reservoir.  The second reservoir 
is penetrated by a number of wells and is 3 to 20 m thick with oil and gas accumulations.  The results from 
this neural network application are shown in Figure 4, and indicate a strong similarity to the training 
reservoir, which is from well log data quite similar. 
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Figure 4:  RPI display of deeper reservoir.  This neural network was constructed using the training points 
from the other reservoir 
 
Conclusions 
 
A neural network classification approach has been demonstrated using two different attribute sets with two 
different reservoir levels (with similar reservoir characteristics).  While the use of AVO attributes for one 
test appears to have yielded higher fidelity results than the partial stack attributes, both tests indicate the 
usefulness of the multi-attribute approach for predicting hydrocarbon and or reservoir similarity (i.e. how 
attributes from one reservoir can predict the reservoir characteristics of a second).    
 
Please note that the contrast between the two different sets of attributes is expected to vary as a function of 
S/N, and in some data sets where the S/N is low, the partial stack might result in better training and 
validation results.   
 
The results from this case study illustrate an alternative way to assess seismic reservoir characterization 
using multiple attributes and high quality 3D seismic data. 
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