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Introduction 
Interpretation of 3-D seismic data is a time-consuming task that requires advanced 

interpretation workstations and trained and experienced personnel. In the last decade, 

numerous advanced tools have been developed to assist the interpreter who has to cope with 

ever increasing data volumes. Improved visualisation methods such as 3D stereo vision and 

immersive techniques as well as seismic attributes and image processing techniques have 

emerged as important tools to produce more accurate interpretations in less time.  

The number of seismic attributes available on standard interpretation systems is constantly 

growing. Although this is considered a positive development in itself, we do identify 

problems with the interpretation of the ever-growing amount of attributes. One of these is that 

only few experts know what the attributes mean in geological / geophysical terms. Another 

problem is that many attributes are non-unique, i.e. different geological features have similar 

attribute responses. It is therefore not sufficient to only look at one attribute. Instead one has 

to use many attributes simultaneously. The obvious questions that arise are which attributes to 

use, and how to combine them. Today, many interpreters display and compare multiple 

attribute cubes, while others try to combine these using some kind of mathematical 

expression. In the first case, the interpreter must have a workstation capable of handling 

multiple volumes of attribute data and displaying them simultaneously. In the latter case, the 

interpreter must find a mathematical expression to combine the attributes effectively. Since 

seismic surveys of different vintage usually exhibit different characteristics, a mathematical 

expression between various attributes will only be valid for the vintage it was developed. 

Instead of having a static mathematical expression between attributes, we use artificial neural 

networks to find relationships between the attributes and desired objects in the seismic data. 

 

 



Methodology 
Artificial neural networks are computing techniques that aim to emulate some desired 

properties of the human brain.  One of these properties is learning from experience. Given a 

number of examples an artificial neural network can be trained to learn the relationship 

between the inputs, e.g. a set of attributes and the desired output, e.g. is this a fault or is it not 

a fault. 

The usage of the artificial neural network based object detection is straightforward and 

intuitive. The interpreter focuses on one geological object at the time. This can be seismic 

chimneys, faults, reflectors, stratigraphic features, hydrocarbon anomalies, and so on. 

Basically any object that is relevant for seismic interpretation. The first objective of our 

method is to enhance the contrast between objects and their background. The output is an 

“object probability” cube. With the help of modern visualisation techniques it is then possible 

to study the spatial relationship between different objects enhanced in this way. A second 

objective, which is beyond the scope of the current paper, is to extract objects (3D bodies and 

planes) from the enhanced cubes to facilitate geological model building. The workflow for the 

generation of “object probability” cubes is as follows: 

 

1. The interpreter scans the seismic data for the object of his/her choice. Let us assume 

that the objective is to map faults. Clicking on seismic sections and time-slices at 

recognised fault and non-fault positions then creates the required training set for the 

neural network.  

2. Attributes with the potential to increase the contrast between object and background 

are selected. The selection process is based on common sense and visual inspection 

supported by statistical measurements such as correlation matrices and color-coding of 

neural network weighting functions. The latter is a simple and effective technique that 

assigns a color from a given color bar to the input nodes of the neural network. Higher 



weights mean that the network relies more heavily on the input node to predict the 

target value. The important attributes are thus easily identifiable. Default attribute sets 

exist for a range of geological objects to facilitate non-expert users. 

3. The artificial neural network is trained to give an output of one at object locations and 

zero at non-object locations. The performance of the classification is measured by 

dividing the locations into two groups, one for training and one for testing the neural 

network. The quality of the result is expressed in a classification matrix. 

4. The trained network is applied to all sample locations in the seismic data. The network 

gives an output value ranging between approx. zero and one. The output can thus be 

considered to represent the probability of the object of interest to be present at each 

location.  

The technique described above has been applied successfully to detect such object-types as 

gas chimneys, faults and salt-bodies. 

 Examples 

1) Chimneys and salt 
The first example presented in this paper is from a prospect evaluation study. The data is from 

the deep-water slope of Green Canyon in the Gulf of Mexico at about 2000m water-depth.  

The 3D seismic cube covers an area of approximately 5 x 10 km2. Seismic chimneys, a salt 

dome, amplitude anomalies and mapped horizons are the objects of interest. Horizons were 

mapped using conventional techniques. The amplitude anomalies are shown as single-

attributes. The neural network, multi-attribute object detection technique, enhanced chimneys 

and salt.  These objects have similar characteristics and therefore cannot be separated 

effectively by single attributes. For example chimneys and salt are both characterised by low 

energy, low trace-to-trace similarity (or coherency) and a chaotic behaviour of the seismic 

response. The latter feature is captured by an attribute we call “dip variance”. In a small cube 



around the extraction point the statistical variance of the local dips and azimuths are 

calculated to derive the “dip variance”. To distinguish salt from chimneys we use the so-

called “directivity principle” when we create attribute sets for chimneys and salt. Geometrical 

aspects of the bodies, such as size, shape and notably directions are used to increase the 

contrasting power of the attributes. Attribute sets are made directive by specifying attribute 

windows and by using multiple windows aligned in the direction of the object. With chimneys 

this is simply done by extracting the same attributes in three vertically aligned windows 

around the evaluation point. The network can thus learn that we are looking for a vertical 

disturbance of the seismic response. For salt we use only one extraction window but we also 

give the in-line, cross-line and 2WT location of the evaluation position to reflect the fact that 

salt does not occur anywhere in 3D space but is confined to a particular corner around the 

example locations.  

 

Massive oil and gas seepage is taking place over the entire northern slope of the Gulf of 

Mexico. This is evident from geological, biological and satellite data.  The most pervasive 

seepage seems to occur in the deeper water slope areas rather than on the shelf (Jean K. 

Whelan, Sea Technology, Sep. 1997, pp. 10-18). Seafloor features that have been associated 

with hydrocarbon seepage in the Gulf of Mexico include carbonate mounds, mud volcanoes 

and seabed depressions.  Seismic chimneys are commonly correlated with hydrocarbon seeps. 

By enhancing seismic chimneys through the method described above it becomes feasible to 

interpret hydrocarbon migration paths and unravel the hydrocarbon system. Detailed studies 

help to identify where hydrocarbons originate in the geological sequence, how these 

hydrocarbons migrate upwards and become trapped and spill to reach the surface. Chimney 

interpretation is therefore a useful tool in the exploration phase, but it also can provide 



valuable information at later phases of a field’s life cycle e.g. regarding fault sealing and 

compartimentalization.  

Fig. 1 shows a 3D visualization of the chimney cube, the salt cube, the standard seismic cube 

and three mapped surfaces. The three mapped surfaces are displayed as time maps in blue, 

green and brown.  The upper one represents the seabed. The second one is mapped at approx. 

200m sub-seabed and the third at 400m sub-seabed.  From the standard seismic cube, only the 

highest amplitudes are displayed in red. Lower amplitudes are made transparent in this 

display.  Chimneys from the chimney cube are displayed in yellow.  These correspond to the 

high values in the cube (i.e. high chimney probability). Lower values are made transparent. 

The salt is displayed in bluish-white. The shallow cloud of high amplitudes (red) is interpreted 

to represent a hydrocarbon charged reservoir.  Chimneys surrounding the salt dome are 

interpreted to indicate upward fluid migration from a deeper reservoir.  High density of 

shallower chimneys indicates charging of the shallow reservoir.  The sub-seabed surfaces 

(green and brown) exhibit a radial fault pattern caused by the upward movement of the salt 

dome.  Chimneys are visible up to the seabed.  A small mound is present at the seabed close 

to the top of the shallowest chimney on the right-hand side.  This may be a small mud volcano 

generated by transport of sediments, fluid and/or gas to the seabed (Fig. 2).  

2) Faults 
Mapping faults is usually one of the most difficult and time-consuming tasks in seismic 

interpretation. In a typical workflow the initial goal is to establish a structural framework by 

mapping the larger faults first. This is followed by detailed mapping of smaller scale faults at 

the reservoir interval. The example shown here is from an area offshore Africa. The same 

method used to enhance chimneys was used here to detect faults. Similar attributes were used 

but attrribute parameters and window settings were tuned to faults rather than chimneys. Fig. 

2 (left) shows a time-slice from the resulting fault cube. The figure on the right is a single 



attribute similairy display at the same time level. The multi-attribute, neural network-based 

approach shows better fault continuity and a higher signal/noise ratio. 

 

3) Salt 
Mapping the exact outline of a salt dome is important for structural mapping and accurate 

time-depth conversion. In pre-stack depth migration exercises a geological model must be 

updated repeatedly and it pays to incorporate a fast, accurate mapping procedure. The 

example from onshore Western Europe shows a Zechstein salt pillow. The boundary between 

salt and overlying / underlying formations is quite sharp. At various positions along the top of 

the salt small domes can be observed where salt has moved upwards and possibly squeezed 

into the overlying strata. The ”proto-”salt domes seem to coincide with weaker zones in the 

overburden where faults are observed.   

 

Conclusions 
The method of seismic object detection has proved to reduce interpretation cycle times 

drastically. In the first example shown the presence and distribution of chimneys that have 

been mapped in the area, make the presence of a deep and a shallow hydrocarbon charged 

reservoir more likely. A manual mapping of chimneys would have been difficult, less precise 

and more time consuming. The second example showed that faults can be mapped more 

accurately by the method than by conventional, single attribute techniques. The last example 

showed that salt bodies can be delineated in great detail. 

 


	Semi-automated object detection in 3-D seismic data

