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Summary 
 
In reservoir property prediction, estimations of presence 
and thickness of reservoir are often found to be erroneous 
by drilling results. The reservoir in this study is onshore 
tight sand gas reservoir with a low impedance contrast 
between reservoir sands and encasing shale. In addition to 
the low amplitude of the reservoir reflector caused by the 
low-impedance contrast, multiple energy interferes with the 
primary reflector. This causes the reflector amplitudes to be 
decreased or enhanced. Subsequent predictions of thickness 
and porosity are unreliable as a result. In this study a 
number of methods are applied to minimize the effect of 
multiple interference and each method is validated against 
actual well measurements individually to assess its 
effectiveness. Secondly, attribute based Neural Network 
predictions are used to asses the impact of multiple 
contamination at a given point in order to predict where 
reservoir properties will be accurately predicted and where 
errors may occur. 
 
Introduction 
 
The study area is located onshore Texas. The depth of 
reservoir is approximately 17,000 ft. Ten wells were 
previously drilled with variable results. Seven wells were 
available for calibration, while and three wells were used as 
blind test.. The reservoirs show porosities in the range of 6-
9%, with the sands in general having slightly higher 
impedances than the encasing shales. The amplitude 
strength of the reservoir reflection is strongly dependent on 
tuning (effects), with the sands being in tuning range for 
thicknesses between 80 and 200ft. However, low S/N ratios 
caused by low impedance contrast and the interfering 
multiple energy, make it difficult to distinguish between 
thicker and thinner reservoir sands using the full and partial 
stacks. However, on the gathers it is possible to correlate 
with good versus bad wells, indicating that the seismic 
contains sufficient information to discriminate between 
reservoir and non-reservoir. In this study a number of 
methods to improve reservoir property predictions were 
tested with well results (some of them blind test) as 
validation. First applied three methods of multiple 
recognition and removal (pattern recognition, Radon 
transform, and deconvolution) to improve thickness 
estimation based on amplitude and frequency 
characteristics of the reservoir reflector. The results of each 
method were validated against net sand thickness from the 
wells. Also evaluated was the use of acoustic impendence 
inversion as a means  to a more stable prediction of 
reservoir properties in the presence of multiples. Secondly, 

we developed a set of attributes that potentially can 
highlight interference of multiples with the primary 
reflector. These attributes were combined using neural 
network technology and Support Vector Machine result in a 
multiple contamination map. This map can be used to 
assess the accuracy (confidence intervals) of the reservoir 
property predictions.  
 
Synthetic seismic modeling and basic seismic attributes 
analysis 
 
After detailed analysis of well logs, we made synthetic 
seismic models with the reflectivity of the well 1, which is 
representative for the seven wells available: higher 
impedance than above shale and blocky sand with 
thickness of 219 feet.  
 
Although synthetic wedge models show a good 
relationship between amplitude and thickness (Figure 1), 
the crossplot of amplitude and thickness at the well 
locations (Figure 2) shows there are two outliers: the well 
6 has a thickness of 38 feet, but amplitude of 55; the well 
7 has a thickness of 164     feet, but amplitude of 38. These 
outliers may be attributed either to a irregular acquisition 
grid (Well 6) and/or multiple interference. 

Figure 1. The relationship of Amplitude and instantaneous 
frequency against thickness.  
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Figure 2. The crossplot of amplitude and thickness at the 
well locations. The blue dots are the amplitude values read 
from the full stack data in OpendTect. The green dots are 
the amplitude values read in Hampson-Russell. The 
magenta curve is quadratic fitting after taking out well 6 
and well 7.  
 
Acoustic Impedance inversion 
 
In order to derive a better amplitude and thickness 
relationship, we inverted the acoustic impedance from the 
full stack seismic data. After testing three inversion 
options (bandlimited, model-based, and neural network) 
inversion, we found that on the cross section which has 
both of the wells 1 and Well 5, only neural network 
inversion distinguishes the thick well (Well 1) and the thin 
well (Well 5):  neural network inversion picks the sand 
body at the reservoir level of 1 and this sand body 
disappears at the reservoir level of Well 5. Therefore, we 
chose neural network to invert the acoustic impedance. 
Why the neural network prediction has the best quality is 
not entirely clear, but it may be that the non-linear nature 
of neural networks is better capable of handling 
interferences in the signal due to the multiple interference.  
 
To asses the robustness of the NN AI inversion we tested 
three variations in the original model building: First 
omitting Well 2, 4, and 5 from NN training;  then omitting  
Well 6 and well 7 and in the third run omitting Well 1 and 
Well 3 from NN training.. Visually examining the match 
of inverted impedance and the impedance at the absent 
well locations for each variation, we found the neural 
network inversion which leaves out Well 1 and Well 3 in 
modeling matches best with the impedance at the absent 
well locations. The inversion results from these three 
variations have comparable correlation coefficients with 
the impedance of the input wells (from 0.75 to 0.79, see 
Table 1 inversion validation with cross-correlation). 
However, comparing with the first two variations, the 
third variation – leaving out Well 1 and Well 3 in original 
modeling – has a higher correlation coefficient (0.73) with 
the absent wells. Hence rotating the wells in and out the 

train set affects the result, implying the robustness of NN 
AI inversion is less than hoped for in this particular case. 
 
Table 1. Inversion validation with cross-correlation  
 

Inversion 
variations 

Absent wells in 
modeling 

Correlation 
with input 
wells 

Correlation 
with absent 
wells 

1 Well 2, Well 4 
and Well 5 0.79 0.57 

2 Well 6 and 
Well 7 0.77 0.59 

3 Well 1 and Well 
3 0.75 0.73 

 
Multiple recognition 
 
We tried two methods of multiple recognition that were 
based on seismic attributes. The methods were: pre-stack 
NN and post-stack NN. NN have the advantage that if 
there is no strong correlation between one input attribute 
and the target, (amount of multiple contamination) it can 
combine multiple attributes with weak correlations in a 
optimized prediction (Aminzadeh and de Groot, 2005) 
 
For the pre-stack NN dip –in the time offset domain- and 
dip-related attributes are important in multiple recognition, 
since the data is NMO corrected and therefore dipping and 
non-aligned events will be indicators of multiple energy. 
Using dGB OpendTect software a steering cube was built 
for the whole gather volume (a steering cube is a 3D 
volume to guide the attribute calculation following the dip 
direction).. Other attributes that indicated multiple energy 
are frequency and irregular variations of maximum and 
minimum amplitude of an event with offset These 
attributes were calculated for the whole gather volume. 
Next we pick primary and multiple on the gathers. If one 
event is flat and continuous in the offset direction, we 
considered it as primary. If one event is dipping, we 
considered it as multiple. We attempted to make all the 
picks within the steering cube and made the picks evenly 
distributed along the whole gather cube. Based on these 
manually picked example points we trained the NN to 
classify the gathers into primary and multiple and applied 
it to the whole gather volume. (see attachment for Neural 
Network information). Figure 3 shows one of the original 
gather, classified primary and multiple.  
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Figure 3. One of the original gather, classified primary, 
and multiple. The green dots on the original gather are 
picked primary locations; the blue dots are picked multiple 
locations. One gather has 100 traces. The red lines are the 
boundaries of the steering cube. The thick blue horizontal 
line is the target horizon.  
 
After classification, we stack the primary and multiple 
possibilities into primary cube and multiple cube. 
Comparing the classified primary and the stack of raw 
gathers, we found that these two volumes were very 
similar. Therefore we draw a conclusion that most of the 
dipping multiples on raw gathers were attenuated by 
stacking.  
 
In the post stack approach we apply the same kind of 
procedure, however with post-stack attributes. Attributes 
include variation of amplitude strength between partial 
offset stacks, variation of amplitude strength between 
azimuthal stacks, misalignment of events between partial 
offset stacks and misalignment of events between stacks 
and frequency content. The rational of this technique was 
that: if there is multiple energy interfering with an event 
we expect more misalignment and irregular amplitude 
variations between the different stacks. Also the frequency 
content might be lower due to interference with primaries. 
Subsequently we picked points in the volume that we 
assessed as having low, moderate and high multiple 
interference respectively. The classification is done by the 
user, based on the gather views. Subsequently a NN is 
trained to recognize the zone of low, moderate and high 
multiple contamination and applied to the whole reservoir 
area.  
 
Multiple removal and thickness estimation 
 
Also two methods for multiple elimination were applied: 
predictive deconvolution and radon based demultiple  

We applied predictive deconvolution to see if we may get 
a better amplitude-thickness relationship. The predictive 
deconvolution used is Predictive Error Filter in Seismic 
Unix. We found that an operator length of 28 ms and a 
predictive length of 120 ms gave a better amplitude-
thickness relationship. We also tried Radon transform with 
Hampson-Russell software. Figure 4 shows the amplitude-
thickness relationship after predictive deconvolution and 
Radon transform. 

 
Figure 4. The relationship between amplitude and 
thickness after predictive deconvolution and Radon 
transform. All of the three amplitudes (original, after 
Radon, after decovolution) were normalized according to 
their surveys). The green line is the linear fit to 
deconvolution result. The function in green letters is the 
linear regression function of the green line.  
 
We also observed that the primary after deconvolution had 
similar pattern with acoustic impedance inversion nearby 
well 6 (Figure 5). Where the Acoustic Impedance 
inversion was low in the small square in Figure 5, the 
primary after deconvolution was also low.  
 

 
Figure 5. Map views of well 6 from full stack, primary and 
multiple after deconvolution, and acoustic impedance. The 
squares in the center of the four smaller figures are scales 
to indicate the inlines and crosslines which are five traces 
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away from well 6. Well 6 is centered in those squares. The 
dashed lines are digitized from the pattern of Acoustic 
Impedance inversion, and then are plotted on the other 
three figures. The primary after deconvolution has similar 
pattern with acoustic impedance inversion. 
 
Multi-attribute analysis 
 
To derive the best possible thickness estimation we 
combined peak amplitude and impedance in predicting 
thickness. Although both peak amplitude and impedance 
show relationships with thickness, neither of them could 
separate the thin and thick wells at the reservoir in our 
study. We considered a reservoir thickness above 80 feet 
as thick and economical. If a well has a thickness of 70 or 
less, we consider it as a thin well. Figure 6 shows the 
crossplot of peak amplitude and acoustic impedance. In 
the peak amplitude and acoustic impedance crossplot, the 
thick and thin wells are becoming separable.  

 
Figure 6. The crossplot of peak amplitude and acoustic 
impedance. The wells with thickness above 80 are plotted 
as red “+”, and the wells with thickness below 80 are 
plotted as blue “+”. The black lines are cutoff values. 
 
We first applied cutoff values to make thin and thick 
classifications. In our dataset, if the impedance is below 
3.5x104, most likely it will be a thin well; if the peak 
amplitude is less than 0.7, most likely it will be a thick 
well. We applied Support Vector Machine (SVM) to 
separate thin and thick wells in the region where the peak 
amplitude and impedance were higher than cutoff values. 
An SVM is an algorithm using selected examples (known 
as support vectors) in classification. The theory of SVM 
was introduced to the computer learning community in the 
mid 1990s (Vapnik, 1995). The SVM application of 
seismic attributes classification can be found in Li and 
Castagna (2004), Zhao et al. (2005).  
 
Figure 7 shows the map view of the multi-attribute 
classification results. Validation from the three withheld 
wells (not used in this study) shows that this method 
predicts two withheld wells into right category. It only 

misclassified one of the three withheld wells.  

 
Figure 7. Map view of the thin and thick classification 
results. Dark blues (-3) stands for classified thin area 
according to cutoff values. Light blue (-1) stands for 
classified thin area according to Support Vector Machine. 
Red (1) stands for classified thick area from both cutoff 
values and Support Vector Machine. 
 
Conclusions 
 
From pattern recognition analysis, we found that multi 
attribute NN can highlight multiples pre-stack and post-
stack. The similarity between classified primary from pre-
stack pattern recognition and the stack of raw gathers 
indicated that most of the dipping multiples on raw gathers 
were attenuated by stacking. Although both Radon and 
deconvolution demultiple algorithms gave a better 
thickness-amplitude relationship for the available wells. 
However not all of the blind wells were predicted 
correctly. The multi-attribute analysis of acoustic 
impedance and peak amplitude is very effective in 
highlighting the economical reservoir.  
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