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Summary 
 
Seismic technology has historically focused on resolving 
the structures. To a lesser degree, presence or absence of 
reservoir has also been a focus. This paper shows the use of 
seismic data to detect several other “seismic objects”. The 
technique to be referred to as “meta attribute”, uses the 
combination of “artificial intelligence” of neural networks 
and the “natural intelligence” of an interpreter. Examples of 
many geologic features and reservoir properties detected 
using this technique will be provided. They include 
hydrocarbon probability, lithofacies, chimney, faults and 
salt.  
 
Introduction 
 
The advent of 3D and 4D technology and increasing 
computing power have led to an explosion in application of 
seismic attributes. Seismic attributes were first “clustered” 
or combined by Aminzadeh and Chatterjee (1985). This 
was accomplished by first, performing a “principal 
component analysis” (PCA), ensuring they are not 
correlated. This was followed by “clustering” to highlight 
gas related bright spots using several attributes in the factor 
space. Clustering or other conventional statistical tools 
(regression, cross plots, etc) allow a linear transformation 
to combine different attributes and compare their respective 
contribution and role in the classification process. 
Nowadays there is an increasing need to identify subsets or 
combinations of attributes that can highlight a given 
geological or reservoir property most effectively. 
 
Rapid expansion of the number of attributes to be evaluated 
and the enormous size of multiple volumes of various 
attributes started to become unwieldy. One solution to this 
problem was offered by de Groot and Bril (1997). They 
maintain that since all seismic attributes are derived from 
the original seismic wavelet response, the original wavelet 
should include all the information content of all derived 
attributes. “Seismic character” can be combined with 
certain attributes to exaggerate subtle features. For 
example, the frequency attribute may be a good sand 
indicator but for very thin sand, square of frequency may be 
needed to highlight sand bodies. Also, spatial information 
(e.g. cube similarity or azimuth variance) and pre stack 
seismic information (e, g, AVO) can be captured by 
defining new attributes. 
 

Why neural networks and meta Attribute?  
 
Several different neural network-based methods to handle 
and better utilize seismic attributes have been introduced, 
e.g. Schuelke et al, 1997 and Aminzadeh and de Groot, 
2004. Neural network-based methods, has many 
advantages. Among them are their noise tolerance and their 
ability to fully capture and account for the non-linear 
relationship between the seismic data and reservoir 
properties, as well as nonlinear transformation of seismic 
attributes  
 
The mechanism to combine different attributes, such as 
regression analysis, principal component analysis, 
clustering or neural networks assist in the overwhelming 
task of evaluating and visualizing the impact of different 
attributes on the output. However, these methods on their 
own can be considered a black box. Usually there is no 
possibility to incorporate the knowledge and insight of the 
interpreter in conventional clustering or neural network 
approaches. Meldahl et al (2001) and Rooij and Tingdahl 
(2002) introduced a method that forms the basis for the 
meta- attribute approach. One aspect of the “meta attribute” 
concept is its versatility in the training process. The 
following are the main features of meta-attributes:  
 

 
Figure 1, Meta- Attribute Concept combining Human and 
Machine Intelligence  
 
Figures 1 shows the procedure, which is similar to a 
conventional neural network-based method with the 
important addition of the “Example Picking/Selected 
Training Points” box  For example let us assume the focus 
of the interpretation work is to highlight all the areas with 



high probability of hydrocarbon. The first step is to 
examine the data set and identify areas to be known (from 
well entries) or suspected hydrocarbons (with visual 
inspection geologic interpretation of the data.).  Such points 
are identified as (1) Using the same concept, we also 
identify representative areas, which are likely to be “no-
hydrocarbon”. Those points are shown by (o).  
 
After attribute calculations and going through the training, 
testing and application phase, we can then create an 
implicit non-linear transformation of all the attributes that 
we can call “Hydrocarbon Attribute” In an ideal situation, 
Hydrocarbon Attribute should highlight only those areas 
within the 3-D volume that correspond to areas with large 
probability of having hydrocarbon and nothing elsewhere 
(based on a user defined threshold). Practically, we create a 
“Hydrocarbon Probability Attribute” or HPA volume with 
large values of HPA associated with those areas that have 
closer overall “likeness” to the combination of attributes 
represented by the “known” or interpreted hydrocarbon. 
 
Examples of Meta Attributes: 
 
Meta Attributes are used to highlight any seismic anomaly 
that can be related to a particular geological or reservoir 
property seismically. This includes a large number of post 
stack and pre-stack attributes. Time lapse (4D) data and 
multi-component (4C) data could also be used as input. 
Aside from the HPA discussed earlier, among features that 
have been detected using meta attributes are salt bodies, 
chimneys, faults, lithologies (channel and sheet sand, shale 
and levees,) Tuning thickness (through spectral 
decomposition,) fractures, reefs, and 4D anomalies.  
 
In what follows, we will provide examples on a selected 
number of geologic and seismic objects that have been 
highlighted through this approach. 
 
Hydrocarbon Probability Meta-Attribute 
 
Figure 2 shows a section through a hydrocarbon probability 
volume, using the concept described earlier. The training is 
based on geologist interpretation and information from a 
number of known wells. The input to the neural network 
include absorption related attributes (measure of high 
frequency loss due to transmission of seismic waves 
through columns of hydrocarbon saturated rocks) as well as 
angle gather data indicating variation of amplitude and 
other attributes with offset. The events highlighted in green 
and blue show areas with higher probability of 
hydrocarbon, some confirmed by wells (one shown). The 
vertical black and gray events are “gas chimney” events, to 
be described later, also show good correlation with those 
events highlighted as high probability of hydrocarbon.  

Figure 2- A Hydrocarbon Probability  Meta Attribute 
 
Salt Meta Attribute 
 
In Figure 3 we show how a salt body is isolated, based on 
the meta-attribute concept.  The procedure described earlier 
on HPA is modified by selecting the “salt” and “non-salt” 
seed points on the original seismic data and training the 
neural network accordingly. Naturally, a somewhat 
different set of input attributes are used to make the 
distinction in this case. 

 
Figure 3- A Salt  Meta Attribute. 

 
Areas highlighted in blue, green and yellow indicate high, 
medium and low “likeness” to salt features picked by the 
interpreter in the training process. 
 



Chimney Meta Attribute 
 
As it was described in Meldahl et al (2001) and Connolly 
and Aminzadeh 2003) gas chimneys can be used not only 
for geohazard detection but also as an effective exploration 
tool. Through focusing on the vertical chaotic seismic 
disturbance in 3-D data we create a chimney meta-attribute 
volume that highlights fluid migration pathways. It can also 
help determine the seal integrity and charge capacity. Thus 
combined with other meta-attributes and other data 
chimney volumes can be used as a useful tool to gain a 
better understanding of the petroleum system and serve as 
an indicator for hydrocarbon migration and entrapment. 
Figure 4 shows a “Chimney meta-attribute” overlain on a 
conventional seismic section. 

 

 
Figure 4- A Chimney  Meta Attribute 

 
Fault Meta Attribute 
 
Using a similar approach, but through picking known or 
suspected faults we highlight both obvious and subtle 
faults. Figure 6 (bottom panel) shows one such result with a 
few slices of fault volumes and a slice of the original 
seismic data. In our experience faults highlighted by this 
method are more continuous than faults identified by the 
conventional similarity- or coherency-based approaches. 
Factors contributing to the success of a fault cube are: a) 
the input attributes are “dip-steered”, meaning that the 
attribute response is calculated along the seismic reflection 
energy that forms geologic horizons.  b) the input to the 
neural network comprises many attributes, including 
similarity, each of which may respond to different types of 
faults differently. c) Interpreter’s insight is incorporated in 

the process in the form of handpicked fault and non-fault 
positions. Figure 5 shows Improvement gained from the use 
of meta-attributes in highlighting more subtle faults are 
evident when the results of fault cube are compared against 
the conventional similarity (coherency),  
 

 
Figure 5, Comparison of Fault Meta Attribute (bottom) and  

conventional similarity (top) 
  
Lithology Meta Attribute 
 
Figure 6 shows an example of the lithology meta-attribute. 
In this case, instead of creating a “two-class” output such as 
salt versus no salt or fault/no fault, we create a three-class 
output, comprised of channel, levee and silt-shale with their 
respective confidence levels. Here, while the colors show 
different lithology classes, the brightness shows the 
associated confidence in the classification process. 
 

Figure 7, A three-class lithology Meta Attribute  



Spectral Decomposition Attribute 
 
Spectral Decomposition (SD) is another attribute that either 
by itself or in conjunction with other attributes can improve 
"below resolution" seismic interpretation, sand thickness 
estimation and highlighting channels. In SD spectral 
properties, or scale properties are extracted from a small 
part of the reflectivity series through mathematical 
transformation. As a consequence of the small transform 
window the spectral response of the geological column is 
not "white" but contains effects such as spectral notches 
and tuning frequencies that relate to the local reflectivity 
only, hence geological properties such as stratigraphic 
units, layer thickness and stacking patterns are highlighted. 
Combining spectral slices we can see subtle features, often 
below seismic resolution, which are not as clear on the 
single attribute section such as energy or instantaneous 
frequency.  
 
In Figure 8, amplitude and energy attributes are contrasted 
against the three spectral bands. Different areas brighten up 
at different frequencies to highlight the main meandering, 
indicating variations of thickness within the channel (good 
connectivity), or channels composed of sedimentary sub-
bodies, some of which may be deposited during 
catastrophic event like flooding (poor connectivity)  

 
Figure 8, A horizon slice of  the original seismic and 

different spectral bands. 

Conclusions  
 
The neural networks based meta-attributes that incorporate 
interpreter’s knowledge have many advantages for creating 
outputs with desired seismic objects associated with 
particular geologic features and/or reservoir properties. 
Aside from the ability to combine different attributes to 
benefit from their respective prediction power, they allow 
interaction of the interpreters with the neural network 
during its training process. Thus their intuition and 
expertise can complement the strength of different 
attributes and help better training of the neural network. 
 
This method can be used for detecting any geologic feature 
or reservoir property whose foot print can be traced to a 
particular change in the seismic response. Among geologic 
features detected, are: salt, gas chimney, fault, fracture, 
sand thickness, lithology, hydrocarbon probability and 
dynamic changes in the reservoir highlighted by the time-
lapse data. 
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