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Introduction
The integration of multi-disciplinary data and prior know
ledge reduces uncertainties associated with the exploration, 
development, and management of hydrocarbon reservoirs. 
The integration process, known as reservoir characterization 
when applied to a reservoir interval, combines information 
from a wide range of sources including seismic data and/
or attributes, well tests, well logs and cores, and any other 
data that can be correlated, directly or indirectly, to reservoir 
properties such as porosity, permeability, saturation, thick-
ness, and lithofacies. However, the number of wells in a 
study area often limits the integration of seismic data and 
seismic-derived attributes with reservoir properties obtained 
from well data. Where only a few wells have been drilled, 
which is the case at the early, mid, and sometimes even the 
late stages of most oil/gas field developments, the statistical 
requirements for such integration are not satisfied. To com-
pensate for the paucity of real wells penetrating reservoirs to 
be characterized, the use of stochastic (e.g., de Groot, 1995; 
Oldenziel et al., 2002) and deterministic (e.g., Spikes and 
Dvorkin, 2004) pseudo-wells has been demonstrated. 

Our emphasis throughout this paper is on stochastic 
pseudo-wells. In general, information from simulated wells 
ensures better statistical representation than can be achieved 
with only real wells (e.g., Nakayama and Hou, 2002). The 
fundamental assumption is that the units seen in any well 
within a study area are not standalone columns, but have 
spatial petrophysical and stratigraphic relationships with 

other units in the area. By analysing the petrophysical and 
stratigraphic relationships between lithological units in the 
real wells, and using our knowledge of the depositional sys-
tem, we construct an integration framework which defines 
characteristics and relationships between units and sub-units 
that serve as building blocks for all real and pseudo-
wells. A schematic illustration of a stratigraphic integration 
framework for a particular case study is shown in Figure 1. 
Based on the integration framework, we then construct the 
pseudo-wells using Monte Carlo simulation (Mardia et al., 
1979; Deutsch and Journel, 1992). Figure 2 shows sample 
logs from pseudo-wells showing the top and base of the 
reservoir in each case. 

Since the simulated pseudo-wells represent the strati-
graphic sequence and probable rock physics properties 
at locations within a study area, it is possible to directly 
correlate rock properties defined by these wells to the seismic 
signature at spatial positions within a seismic cube. The Hit 
Cube algorithm assigns spatial positions to stochastically 
generated pseudo-wells with the aim of predicting possible 
reservoir properties and/or quality, together with relative 
uncertainties throughout the seismic cube.

We have generated two pseudo-well groups based on the 
same integration framework. The first group, called the ‘hit 
targets’, consists of stratigraphic units with desirable reservoir 
properties (e.g., high net-to-gross, hydrocarbon-filled channel 
sands), while the ‘false hits’ are statistically equally possible 
stratigraphic units with undesirable reservoir properties (e.g., 
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from the seismic data and matched them with the real 
traces throughout the seismic volume. A ‘hit’ exists when the 
similarity between the model and real seismic traces exceeds 
a predefined threshold. If this hit criterion is satisfied, we 
assume that the rock properties defined by both the real and 
synthetic traces are similar within the limits of the predefined 
uncertainty criterion. Outputs from this procedure include 
cubes of the number of hits, ‘scores’ (cumulative similarity 
coefficient) and ‘winner wells’ (models with highest similar-
ity) at each sample position. By comparing the hit-target 
and false-hit outputs at each point, we obtain an estimate of 
the likelihood that the properties of our targets are indeed 
present at those points. Likelihood cubes are obtained as a 
ratio of the hits (and scores) of the targets to those of the 
false hits throughout the cube.

In the following sections, we summarize this procedure 
and show some results from the investigation of reservoir 
presence and distribution in a deltaic setting.

The workflow
Stochastic pseudo-wells are generated using information 
from the real wells and geological knowledge of a study 
area defined in a stratigraphic integration framework using 

low net-to-gross hydrocarbon or brine-filled channel sands), 
which may or may not have similar seismic characteristics 
to the target units. We then constructed synthetic seismic 
traces, scaled to the real seismic amplitudes, for each set of 
pseudo-wells using the same statistical wavelet extracted 

Figure 1 Schematic illustration of a stratigraphic integration framework showing different levels of interpretation and integration of the framework units. Each 
column represents components of different hierarchies of integration. The illustration is for the case study discussed later in this article, and depends on the 
particular stratigraphic environment being studied.

Figure 2 Sample pseudo-wells showing density (red) and sonic (green) logs. 
The blue markers in each well show the top and base of the stratigraphic unit 
being studied.
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a single consistent generic framework. Each framework unit 
(stratigraphic and lithological building block) is assigned to 
a category (e.g., ‘seal’, ‘reservoir’ or ‘waste’) and values are 
specified for its physical properties (e.g., acoustic impedance, 
thickness, porosity, permeability). The framework units form 
the building blocks for describing different geological models, 
which in our application are real or simulated wells. 

Markov chain analysis and Monte Carlo statistics (de Groot et 
al., 1996). An understanding of geological setting and the con-
struction of a robust integration framework are fundamental 
preliminary steps to obtaining reliable models which actually 
represent the geological possibilities in the area being studied. 
The available information, with their different dimensions 
and widely varying scales and accuracies, are combined into 

Figure 3 An illustration of the main data types (yellow boxes) and processes 
(red boxes) used to generate the synthetic and scaled real seismic traces (blue 
boxes) required in the matching process.

Figure 4 Hit cube algorithm showing the input parameters (yellow boxes), 
processes (red boxes), and final outputs (blue boxes). 

Figure 5 Similarity field for a simple wedge-shaped sand-shale model. The hit targets are hydrocarbon-filled sand units overlain by shale, with the only variable 
in each group being the thickness of the sand units. Zones of high similarity (green) cannot be well separated by this procedure, while those with low similarity 
(yellow) can easily be separated. In this example, a similarity threshold greater than 0.51 is sufficient to separate most models in the two sets.
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invoke the convolutional model and assume that the effec-
tive wavelet is invariant throughout the segment of the 
seismic volume being studied. Finally, the real and synthetic 
seismic traces are scaled to similar amplitude ranges before 
the matching proceeds. This workflow (Figure 3) may be 
repeated for different sets of pseudo-wells to study specific 
reservoir properties which are incorporated into the simula-
tion procedure.

The algorithm
In the algorithm, the synthetic traces are matched with real 
traces at every sample point throughout the seismic volume 
with the assumption that the seismic data contain minimal 
noise. It is also assumed that the seismic processing is true-
amplitude and that the convolutional model used to generate 
the synthetics is valid. 

A review of some practical geological considerations 
in the construction of geological frameworks was given by 
de Groot et al. (1996). In the simulation procedure, the 
pseudo-wells are constructed one-by-one, unit-by-unit, and 
variable-by-variable. Therefore, it is possible to determine 
at any time whether a variable must be simulated and which 
constraints should be satisfied.  As mentioned above, we 
have simulated two well groups:
n	 Hit targets – pseudo-wells with desirable properties (e.g., 

thick gas-filled units)
n	 False hits – pseudo-wells with undesirable properties (e.g., 

brine-filled units)

After accounting for fluid effects, synthetic seismic traces are 
generated for all pseudo-wells using an effective wavelet 
that is extracted statistically from the seismic data. We 

Figure 6 Schematic illustration showing how the hit and score traces are computed. 

Figure 7 Time slice showing (a) hits overlying real seismic data (greyscale) and (b) scores for the hit targets in the case study. In both figures, green indicates zones 
with high hits/scores, while yellow and red indicate zones with low hits/scores. The hits are clipped at 0.2 to show the real seismic data. The red, blue, and black 
lines indicate the three well locations. 
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frequency in the seismic wavelet.  If the similarity between the 
real and synthetic traces exceeds a specified threshold, rock 
properties defined by both are considered similar and a hit is 
recorded. The algorithm structure is shown in Figure 4. The 
desired minimum useable similarity threshold is determined 
as the degree of separability of the pseudo-well models which 
could be assessed either by cross-matching all the hit targets 
and false hits and/or by using the composite similarity plots 
for a wide range of possible rock property changes. Figure 5 
shows the similarity field for a simple wedge-shaped model.

The similarity coefficient, s, is defined as

,	 (1)

where v1 and v2 are the two trace segments being compared. 
The trace segments used in the matching process are defined 
by the time-thickness of the unit computed from the simulated 
well logs plus half the period corresponding to the dominant 

Figure 8 Time slice showing (a) likelihood of hydrocarbon presence and (b) likelihood scores. In both figures, green indicates zones with high hits/scores, while 
yellow and red indicate zones with low hits/scores. The likelihood of hydrocarbon presence is overlain on the real seismic data (greyscale) and is clipped at 0.2. 
The three well locations are indicated by the red, blue, and black lines. 

Figure 9 Three-dimensional view of the likelihood score cube. Green and blue indicate zones of high likel hood of hydrocarbon presence, while yellow and red 
indicate zones of low likelihood. The highlighted spikes in the water saturation log (clearly seen in the enlarged image) in well A2 indicate locations where 
hydrocarbons are known to be present in the well. The blue arrows indicate channel features with high likelihood scores. Similarity threshold: 0.65.
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match between the likelihood results and water saturation 
logs from well A2 (Figure 9), and also from segments of A1 
and A3 (not shown).

Conclusions
We have discussed a procedure that allocates spatial locations 
to stochastic pseudo-wells within a seismic volume. Prediction 
of reservoir presence and hydrocarbon distribution using this 
procedure has also been demonstrated. In the case study, pre-
dicted reservoir distribution defines distributary channel systems 
known to be present in the study area. Water saturation logs 
in the three real wells confirmed accurate prediction of hydro
carbon presence. Further tests and development of the concept 
and algorithm (e.g., to include AVO effects) are ongoing.
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Outputs
The primary output cubes include:
n	 Hits – binary sums of equivalent time-thickness of the 

model
n	 Scores – sums of similarity coefficients of the targets over 

the time-thickness of the model
n	 Winners – models with highest similarity coefficient at each 

sample point

Figure 6 shows how the hit and score traces are computed. 
Secondary outputs include:
n	 Likelihood of presence – ratio of the target hits to false hits
n	 Likelihood score – ratio of target-hit scores to false-hit 

scores

Case study
Using this procedure, reservoir presence and distribution 
within a 3D time-migrated seismic dataset (area 20×14.4 km2; 
TWT range 1400 –2800 ms) from an offshore deltaic setting 
were investigated using a complete suite of blocked logs 
(gamma, sonic, density, etc.) from three real wells (A1 to A3) 
being used as controls. Several maximum flooding surfaces 
separate different depositional bodies, the youngest of which 
shows fluvial-marine interaction, in the prograding Pliocene 
system. Fine-grained clastic sediments of Pliocene age domi-
nate the study area, encasing sand-rich channel systems that 
are major hydrocarbon exploration targets. 

Based on our understanding of the stratigraphic com-
plexity, two sets of 100 stochastic models each were 
generated for the hit targets (high net-to-gross units with 
low water saturation) and false hits (low net-to-gross units 
with a range of water saturations and high net-to-gross 
units with high water saturations). The cross-matching 
results (not shown) suggest a minimum useable similarity 
threshold of 0.55. Selected hit, score, and likelihood results, 
at 0.65 similarity threshold, in parts of the seismic volume 
are shown in Figures 7 and 8. The potential gas-filled units 
define channel features known to be present in the study 
area. However, note that not all the channel features show 
a high likelihood of hydrocarbon presence. There is a good 
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